zencontrol Docs

Jul 10, 2025

Contents

1 Third Party Interface Documentation 1
TPIOVEIVIEW . . . o e e e e e 2
Supported DeviCeS e e 2
LiCENSES . . . e e 2

TPI & TPI Advanced over Stream-oriented Transports (RS232, RS485and TCP) 3
Serial Communication Parameters e 3
TPI& TPl Advanced over UDP & TCP e e e e e e e e e e e e 3
TPI(CIasSiC) o e 4
TPIAdvanced e 5
Frame Structures e e e 5
TPIAdvanced Header 5

Basic Request Frame e e e e e 5

DALI Colour Request Frame e 6
TPIDynamic Subframe e 7

DMX Colour Request Frame e e e e 8

TPl Advanced Response Frame e 9

TPIEvent Multicast Frame 10

The Sequence Counter Byte e 1
Calculating Checksums e 1

Error Codes e 12
DALIAAAressing e 12
Special Values e e 13
Instance Binary States e e 13

INStaNCe TYPES e e e e e e 13

Instance Status & State Bitmasks 13

TPIEvent Types o 14

TPIEvent Modes 14

DMX Channel Block Types e 14

DMX Channel Personality Types o e 15

DMX Channel Behaviour Masks 15

DALI Status Masks e 15

DALI Control Gear Type Masks i e e e 16

Commands e e e 17
BasicCommands e 17

Other Commands e 18

Examples e 19
TPI Advanced Examples e 19
QUERY_GROUP_LABEL e e e e e e e e e e 19
QUERY_SCENE_LABEL e e 20
QUERY_DALI_DEVICE_LABEL e e e e e e 20
QUERY_PROFILE_LABEL e e e e e e 21
QUERY_CURRENT_PROFILE_LNUMBER e 22
TRIGGER_SDDP_IDENTIFY e e e e e e 23
QUERY_TPI_LEVENT_EMIT_STATE e e e e e e e e 23
DALI_ADD_TPI_EVENT_FILTER e e e e e e e e e e e 24
DALI_CLEAR_TPI_LEVENT_FILTERS e e e e d e e 25
QUERY_DALI_TPI_LEVENT_FILTERS e e e s e e s e e e 26
ENABLE_TPILEVENT_EMIT e e e e e e e e e e 27

SET_TPI_LEVENT_UNICAST_ADDRESS e 28

QUERY_TPI_LEVENT_UNICAST_ADDRESS e 29
QUERY_GROUP_NUMBERS e 30
QUERY_DALI_COLOUR 31
QUERY_SCENE_NUMBERS 31
QUERY_PROFILE_NUMBERS 33
QUERY_OCCUPANCY_INSTANCE_TIMERS o e 34
QUERY_INSTANCES_BY_ADDRESS o e 35
QUERY_OPERATING_MODE_BY_ADDRESS 36
DALI_LCOLOUR 37
DMX_COLOUR 38
QUERY_GROUP_BY_NUMBER 39
QUERY_SCENE_BY_NUMBER e 40
QUERY_SCENE_NUMBERS_BY_ADDRESS i 2y
QUERY_SCENE_LEVELS_BY_ADDRESS 41
QUERY_GROUP_MEMBERSHIP_BY_ADDRESS 42
QUERY_DALI_ADDRESSES_WITH_INSTANCES e e 43
QUERY_DMX_DEVICE_NUMBERS e e 44
QUERY_DMX_DEVICE_BY_NUMBER 45
QUERY_DMX_LEVEL_BY_CHANNEL 46
QUERY_DMX_DEVICE_LABEL_.BY_NUMBER 47
QUERY_SCENE_NUMBERS_FOR_GROUP o o 48
QUERY_SCENE_LABEL_FOR_GROUP e 48
QUERY_CONTROLLER_VERSION_NUMBER o e 50
QUERY_CONTROL_GEAR_DALI_ADDRESSES 51
DALLLINHIBIT . . . 52
DALILSCENE o e 52
DALI_ARC_LEVEL 53
DALILON_STEP_UP e 53
DALI_STEP_DOWN_OFF 54
DALILUP . o 54
DALILDOWN . . . 55
DALI_RECALL_MAX . . 55
DALI_LRECALL_MIN . . e 56
DALILOFF . .« o e 56
DALI_QUERY_LEVEL 57
DALI_QUERY_CONTROL_GEAR_STATUS i 58
DALI_LQUERY_CG_TYPE e 59
DALI_QUERY_LAST_SCENE 60
DALI_QUERY_LAST_SCENE_IS_CURRENT e 61
DALI_QUERY_MIN_LEVEL e 61
DALI_QUERY_MAX_LEVEL 62
DALI_QUERY_FADE_RUNNING e 62
DALI_LENABLE_DAPC_SEQ e 63
QUERY_DALI_EAN 64
QUERY_DALI_SERIAL 65
QUERY_VIRTUALL_INSTANCES e 66
VIRTUALLINSTANCE e 67
DALI_CUSTOM_FADE e e 67
DALI_GO_TO_LAST_ACTIVE_LEVEL e e 69
QUERY_DALI_LINSTANCE_LABEL e e e 69
CHANGE_PROFILE_NUMBER o 70
QUERY_INSTANCE_GROUPS e 71
QUERY_DALI_FITTING_LNUMBER o 72
QUERY_DALI_LINSTANCE_FITTING_LNUMBER 73
QUERY_CONTROLLER_LABEL e e e e 74
QUERY_CONTROLLER_FITTING_LNUMBER o . 75
QUERY_IS_DALI_READY e 75
QUERY_CONTROLLER_STARTUP_COMPLETE 76
OVERRIDE_DALI_BUTTON_LED_STATE e e e e e 76

QUERY_LAST_KNOWN_DALI_BUTTON_LED_STATE o . 77

DALI_STOP_FADE e 78
QUERY_DALI_COLOUR_FEATURES e 79
QUERY_DALI_COLOUR_TEMP_LIMITS o 80
SET_SYSTEM_VARIABLE 81
QUERY_SYSTEM_VARIABLE 82
QUERY_SYSTEM_VARIABLE_NAME 83
QUERY_PROFILE_INFORMATION e e e e 84
QUERY_COLOUR_SCENE_MEMBERSHIP_BY_ADDR 85
QUERY_COLOUR_SCENE_O0_7_DATA_FOR_ADDR o . 86
QUERY_COLOUR_SCENE_8_1T1_DATA_FOR_ADDR 86
BUTTON_PRESS_EVENT and BUTTON_HOLD_EVENT 88
ABSOLUTE_INPUT_EVENT e e e e 89
LEVEL_CHANGE_EVENT 90
GROUP_LEVEL_CHANGE_EVENT e 90
SCENE_CHANGE_EVENT 91
OCCUPANCY_EVENT e e e e 92
SYSTEM_VARIABLE_CHANGED_EVENT e e 93
COLOUR_CHANGED_EVENT e e e e 94
PROFILE_.CHANGED_EVENT s 95

Third Party Interface Documentation

zencontrol Docs

The Third Party Interface (TPI) is designed to allow third parties to integrate with a zencontrol controller using a UDP or
RS485 protocol.

There are two versions of the TPI to consider.

1. TPI - this is the original/classic TPI. It can perform simple DALI commands, queries, scenes and also inhibit sensors
from changing targets for a period of time.

2. TPI Advanced - this is the newer version which contains a superset of functionality including multicast-events, meta-
data queries, DALI and DMX colour commands, and more.

Supported Devices

TPI
+ Application Controller
+ Room Controller
TPI Advanced
+ Application Controller Pro
* Field Controller
+ ACx3 Pro

Only controllers with RS485 terminals support TPI over Serial.

Licenses

Licenses, or “Add-Ons” can be obtained by emailing support. For more detailed instructions see How do | purchase control
system upgrades? at https://support.zencontrol.com.

License Description

TPI The original TPI. Compatible with all controllers.

TPI Advanced | The newer super-set of TPI with additional features. Only compatible with Pro-series controllers.
TPI Serial Enable RS485 serial support to TPI or TPI Advanced.

Note: Some TPl Advanced features rely on additional addons that aren't related to the TPI itself, Control4 and Virtual
Switches (Virtual Instances) for example.

2 Chapter 1. Third Party Interface Documentation

https://support.zencontrol.com/hc/en-us/articles/360000134036
https://support.zencontrol.com/hc/en-us/articles/360000134036

zencontrol Docs

TPI & TPI Advanced over Stream-oriented Transports (RS232, RS485 and
TCP)

Although the TPl is primarily targeted at UDP transport the majority of features are available over RS485 serial too.

The message contents and headers are the same over both transports although implementations will need to deal with
stream-oriented semantics that aren’t relevant when using UDP. All messages can have their length determined by reading
the first few bytes of a message and this allows a developer to identify individual request messages in a stream of data.

TPI (Classic) Messages request frames are 7 bytes long and response frames are 3 bytes long.

TPI Advanced messages either have a fixed-length request frame format or for some sub-frame types a field in the request
frame indicates the length of the frame in bytes. All TPI Advanced responses are variable length with a field indicating the
frame length in bytes.

Serial Communication Parameters

The serial parameters are as follows for RS232 and RS485. Note that you must have a TPI Serial license to use TPl or TPI
Advanced over serial.

Parameter Value
Baud 19200
Bits per Byte | 8
Parity None
Stop Bits 1

Warning: TP/ Events aren't (yet) available over a serial connection.

TPI & TPI Advanced over UDP & TCP

The TPl is primarily designed to be used over UDP. UDP doesn’t guarantee delivery (or order of delivery) however it's a simple
and lightweight transport that also supports multicast.

Parameter Value

TPI & TPl Advanced UDP/TCP Port | 5108

TPI Events Multicast Address 239.255.90.67
TPI Events Multicast Port 6969

TPI Requests are to be submitted to the IP address of the controller, not to the multicast address. TCP isn’t yet supported.
There is currently a maximum of 5 concurrent TCP sessions.

Note: Although TPI (classic) is able to give responses to requests it may not always be clear if a response is related to the
last request that was sent. TPl Advanced helps fix this issue by adding a Sequence Number that can be set for each request
and included in the relevant response.

TPI Overview 3

zencontrol Docs

TPI (Classic)

TPI Classic documentation can be found at:

https://support.zencontrol.com/hc/en-us/article_attachments/360004332095/Application_Note-Ethernet_UDP_v8_
25-05-20.pdf

The only difference that you should be aware of is that it's now possible to use TPI Classic over RS485 and RS232 if you
have the TPI Serial license enabled. See TP/ & TPl Advanced over RS485 Serial.

4 Chapter 1. Third Party Interface Documentation

https://support.zencontrol.com/hc/en-us/article_attachments/360004332095/Application_Note-Ethernet_UDP_v8_25-05-20.pdf
https://support.zencontrol.com/hc/en-us/article_attachments/360004332095/Application_Note-Ethernet_UDP_v8_25-05-20.pdf

zencontrol Docs

Frame Structures

Tip: The control byte for all TPl Advanced requests is 0x04

TPI Advanced Header

The standard header for all TPl Advanced messages is 3 bytes long.

Control | Sequence Counter | Command
Byte 1 Byte 2 Byte 3

The bytes that come after this are more context dependent and are detailed in specific frame types.

Basic Request Frame

Most commands in TPl Advanced use the following a 8-byte structure as shown below. All first-generation TPl commands
that have been ported to TPl Advanced use this structure, with the main difference simply being the addition of the Sequence
Counter and a slightly different byte order.

Control | Sequence Counter | Command | Address | Data Hi | Data Mid | Data Lo | Checksum
Byte 1 Byte 2 Byte 3 Byte 4 Byte5 | Byte6 Byte 7 Byte 8

Often the Data bytes are simply 0x00 0x00 0x00 except for commands that have more complex or lengthy input (eg. A
number of seconds greater than 255) or have to use an Address to target that has a length greater than 8 bits (most IDs).

Control - This byte tells the controller what message schema to expect.
Sequence Counter - See Sequence Counter Byte.
Command - this byte specifies the specific command being requested.

Address - this byte specifies the address or target of the command. This may be a DALI address, (half) of an instance
number, or something else relevant to the context of the command.

Data bytes (if required) - data bytes are used to supply extra information relevant to the command being requested. This can
sometimes be used to specify an “instance” number which is too large to be specified in a single byte. If no data required
just leave these bytes as 0x00.

Checksum - A CRC8 checksum is placed at the end of all messages. See Calculating Checksums.

TPI Advanced 5

zencontrol Docs

DALI Colour Request Frame

The DALI Colour frame is used specifically for DALI Colour commands. The message is fixed length but some data bytes
may not be used if the colour type does not define usage.

Control | Sequence Counter | Command | Address | Arc Level | Colour Type | Colour Data | Checksum
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Bytes7... 12 | Last Byte

Control - This byte tells the controller what message schema to expect.
Sequence Counter - See Sequence Counter Byte.
Command - this byte specifies the specific command being requested. For the DALI Colour command this is 0x0E.
Address - this byte specifies the address or target of the command.
Arc Level - Optional arc level to go to, during the colour fade. Set to OxFF to do colour only fade.
Colour Type
+ XY 0x10
+ Tc 0x20
+ RGBWAF 0x80

Colour Data - Depending on the Colour Type specify the values in bytes for each channel of the colour type. Use OxFF for
any unused bytes.

+ XY [X Hi bytel [X Lo bytel[Y Hi bytel[Y Lo bytel 0-OxFFFE usable range, set the value to OxFFFF to leave a
coordinate at its current value.

+ Tc [Tc Hi byte] [Tc Lo byte] in kelvin (see note on how kelvin is converted to mirek by dali devices)

* RGBWAF [Red] [Green] [Blue] [White] [Amber] [Free colour] 0-OxFE usable range, set a colour at OxFF to leave a
colour at its current value

Checksum - A CRC8 checksum is placed at the end of all messages. See Calculating Checksums.

A note on Tc colour - Dali devices use Mirek, instead of kelvin temperature. Mirek = 1 million / kelvin. 2000k is 500 mirek.
At the TPl level, we take requests in Tc (K) but each request will be converted to the closest mirek. This creates a potential
issue when querying the kelvin temperature of a device and expecting it to be at the value you requested.

For example, 4500k = 222.22 mirek. Dali devices do not take in floating point requests, so the resultant request would be
222 mirek = (1000000 / 222) = 4504k.

Therefore, it may be necessary to request the kelvin temperature that represents the nearest whole number mirek (by doing
the same calculation here and sending 4504k).

6 Chapter 1. Third Party Interface Documentation

zencontrol Docs

TPI Dynamic Subframe

This subframe type has a loose structure with dynamic length. The request data will be command specific.

Data Length - The number of bytes in Data section. This will vary based on the specific command.

TPI Advanced Header

Data Length

Data

Checksum

Header Bytes 1-3

Byte 4

Byte 5...n

Last Byte

Data - Freeform bytes, as documented for the specific command.

Checksum - A CRC8 checksum is placed at the end of all messages. See Calculating Checksums.

TPI Advanced

zencontrol Docs

DMX Colour Request Frame

The DMX Colour frame is used specifically for DMX commands. This is a flexible way to create fade tasks and complex
patterns across the entire 513 channel range.

TPI Advanced Header | Fade ID | Universe Mask | Start Channel | Stop Channel | Address Divisor

Header Bytes 1-3 Byte 4 Bytes 5-6 Bytes 7-8 Bytes 9-10 Byte 11
Block Personality Fade Data | Fade Type | Fade Type | Data Data Check-
Mode Type A B Length sum
Byte 12 Byte 13 Bytes Byte 19 Byte 20 Byte 21 Bytes21... n,n< | LastByte
1418 16

Note: The Start Channel and Stop Channel range represents a “closed bounded” interval. Eg. If you start at channel 1
and end at channel 3, then channel 1 and channel 3 will be affected by the command.

TPI Advanced Header - normal TP/ Advanced Header
Fade ID - Give the fade an ID so that it can be referenced for cancellation or overwriting.

Universe Mask- The universe mask is 16 bits (two bytes). Use 0xFF 0xFF for all, though 0x00 0x01 should work for all
current single-universe products, including the ACX3 which has three singular universes. It's possible that future products
may support multiple universes per controller.

Start Channel - The “start address” for the pattern being created in the DMX buffer. This is two bytes long. Use 0x00 0x01
for channel 1.

Stop Channel The “end address” for the pattern being created in the DMX buffer. Channel numbers are two bytes long. Use
0x02 0x01 for channel 513 (the 512th usable channel).

Address Divisor - The number to use to “divide” or skip channel numbers when applying the pattern. For example: 0x02 to
select every 2nd channel in the range. This interacts with the pattern you express in your Data - for each channel in Data the
value will be distributed to a channel indicated by the divisor.

Block Mode - How to apply the range described by the Start Channel, Stop Channel. Useful inverting a range with
DMX_BLOCK_DIFFERENCE, however DMX_BLOCK_INTERSECTION is a good default.

Personality Type - How the fade levels values should be handled. 8bit, 16bit, little endian, big endian, etc.
PERSONALITY_DIM_8BIT 0xz00 is default.

Fade Data - 32 bits of space for basic fade data. Fade times in milliseconds can be up to 24bits long (16777216ms, 16777
seconds, 279 minutes).

- Byte 1: Fade Mode. 0x00 is Fade Time mode. 0x01 is Fade rate mode (not yet implemented) and the value for this will
go in bytes 2 - 4.

+ Byte 2: Fade Time Hi.

+ Byte 3: Fade Time Mid.

* Byte 4: Fade Time Lo.
Fade Type A - A fade type. 0x01 Linear Fade is only supported.
Fade Type B - A fade type. Use 0x00 for no fade. Combining fades/sequencing not yet supported.
Data Length - The number of levels that are to be applied over the range. Currently a max of 16.

Data - Up to 16 levels can be used to represent a pattern to be applied over the range. This is useful if your DMX fixtures
have channels arranged in an order such as Red, Green, Blue - you can set all three channels at the same time.

Checksum - A CRC8 checksum is placed at the end of all messages. See Calculating Checksums.

8 Chapter 1. Third Party Interface Documentation

https://en.wikipedia.org/wiki/Interval_(mathematics)#Classification_of_intervals

zencontrol Docs

TPI Advanced Response Frame

For all TPl Advanced requests, a single frame format is used in response. This frame format is variable length. Examples of
responses can be found in TP/ Advanced Examples.

Response Type | Sequence Counter | Data Length | Data Checksum
Byte 1 Byte 2 Byte 3. Bytes 4...n (Optional) | Last Byte

Note: Data Length many be 0. In this case there will be no Data bytes. Checksum will be in the position of Data and the
entire frame will be 4 bytes long.

Response Type | Value | Description

OK 0xAO0 | The request was processed with no problems.

ANSWER 0xA1 | The request was processed and an answer is in Data.

NO_ANSWER 0xA2 | The request was processed, but there is no answer. Not necessarily an error.
ERROR 0xA3 | An error occurred while processing. Check Data if there is any. See Reply Bytes)

Sequence Counter - See Sequence Counter Byte.
Data Length - The length of Data to expect.

Data - If you have an error the Error Code is likely to be here if Data Length > 0. See Error Codes for more information. When
the response is not an error you will typically find values related to the specific request (eg. bytes representing a text label).

Checksum - A CRC8 checksum is placed at the end of all messages. See Calculating Checksums.

TPI Advanced 9

zencontrol Docs

TPI Event Multicast Frame

TPI Events are sent by the controller to IGMP Multicast groups so that 3rd party systems on the network can be notified via
UDP multicast when events such as button presses occur.

The multicast IPv4 address is 239.255.90.67. The port is 6969 on UDP.

Header Controller MAC Target Event Data Data Check-

Address Type Length sum
Bytes 1-2 Bytes 3-8 Bytes Byte 11 Byte 12 Bytes13... n Last Byte
(“zc" 9-10 (optional)

Header: Always [0x5A, 0x43]. ASCII characters ZC.

Controller MAC: this is the MAC address of the controller. Some multicast clients do not have APIs that allow the sender
MAC to be accessed from context so it must be included in every instance message.

Target: this is the context-specific number. Typically something like a DALI Address.

Event Type: the type of event. This determines the context of the Target and the Message Data. See TP/ Event Types for
event type information.

Data Length: indicates the type of event message.
Data: variable length data, possibly 0 bytes but up to 48. First byte may be an instance number (if applicable).

Checksum - A CRC8 checksum is placed at the end of all messages. See Calculating Checksums.

Tip: Event multicast must be enabled on controller start-up. It can also be disabled at any time using the
ENABLE_TPI_EVENT_ENMIT_cMD.If the Control4 add-on has been purchased and enabled you can be notified via the Control4
SDDP multicast when a controller starts.

For example event messages, see links in TP/ Event Types

10 Chapter 1. Third Party Interface Documentation

zencontrol Docs

The Sequence Counter Byte

A sequence counter value allows application developers to easily match requests with responses. This allows detection
and handling for out-of-order responses and lost responses.

The sequence counter value does not change any logic within the controller. This feature can be ignored by using a constant
value (eg. 0x00) but this is not recommended. Using the sequence number can improve error handling with minimal effort.

Put simply, if a request is sent with 0xBE as the Seq. Num byte expect a response with 0xBE as the Seq. Num. If sequence
numbers between a request and response do not match then:

+ Response may just arrive out of order. (Possible due to UDP)

+ Or, the response datagram was lost. (Also possible due to UDP)

Calculating Checksums

This can be calculated by XOR-ing together all preceding bytes of the message (excluding the checksum byte itself). Mes-
sage integrity can be checked XOR-ing together all bytes of a message (including the checksum byte) and the value should
be 0.

The following is an example given in Python.

This calculates the checksum byte for a label query.

>>> checksum = 0x04 =~ 0x00 ~ 0x01 =~ O0xOA =~ 0x00 =~ 0x00 =~ 0x00
>>> print (checksum)

15 # 15 == 0xz0F

There are two methods for checking a checksum that might suit you.

Method 1: Calculate the checksum, excluding the given checksum in the last byte, then compare toy
—the last byte.

>>> packet = [0x04, 0x00, 0x01, 0xOA, 0x00, 0x00, 0x00, O0xOF]

>>> given_checksum = packet[-1]

>>> acc = 0x00

>>> for d in packet[:-1]: # All elements exzcept for the last, which ts the given checksum.

>>> acc = d 7 acc

>>>

>>> print (f"Checksum is valid: acc == given_checksum/")

Checksum is valid: True

Method 2: XOR all elements including the checksum, +if the result is 0 the checksum should be wvalidy
— (assuming packet length <6/).

>>> from functools import reduce

>>> checksum = reduce(lambda x, y: x ~ y, packet) # zor every element of the packet together.

>>> print(f"Checksum is valid: 0 == checksum }")

Checksum is valid: True

TPI Advanced 11

zencontrol Docs

Error Codes

Error Value | Description
ERROR_CHECKSUM 0x01 | The checksum check failed.
ER- 0x02 | A short onthe DALI line was detected. This prevents DALI commands from being
ROR_SHORT_CIRCUIT sent by the controller
ER- 0x03 | Areceive error occurred
ROR_RECEIVE_ERROR
ER- 0x04 | The command in the request is unrecognised
ROR_UNKNOWN_CMD
ER- 0xB0O | The command requested relies on a paid feature that hasn't been purchased or is not
ROR_PAID_FEATURE enabled
ER- 0xB1 | Invalid arguments supplied for the given command in the re quest
ROR_INVALID_ARGS
ER- 0xB2 | The command couldn’t be processed
ROR_CMD_REFUSED
ER- 0xB3 | The queue or buffer that's required to process the command in the request is full or
ROR_QUEUE_FAILURE broken
ER- 0xB4 | The command in the request may stream multiple responses back, but this feature is
ROR_RESPONSE_UNAVAIL not available for some reason
ER- 0xB5 | The DALI related request couldn’t be processed due to an error
ROR_OTHER_DALI_ERRQR
ERROR_MAX_LIMIT 0xB6 | There are an insufficient number of the required resource remaining service the
request
ER- 0xB7 | An unexpected result occurred.
ROR_UNEXPECTED_RESULT
ER- 0xB8 | Device does not exist
ROR_UNKNOWN_TARGET
DALI Addressing

The DALI addressing scheme used in TPI Advanced is not “raw” DALI addressing. The table below describes how targeting
of DALI commands are performed. For commands that support broadcast (such as TPI lighting commands), the user can
use either of the broadcast values (127 was the original TPI designation, 255 is the advanced TPI broadcast value).

Target Type Range -

DALI External Control Gear 0-63 DALI short addresses.

DALI Groups 64-79 Groups are 64 + Group Number. Eg. Group 1 is address 65.
Dali Broadcast 127 or 255 | Broadcast (If supported)

DALI External Control Devices | 64 -127 These are logically offset from the ECGs by 64.

Note: Please note that commands that are not causing DALI commands to be sent out will generally NOT use this address-
ing scheme - particularly when the commands that operate only on a subset of the data (ie only the groups). For example, if
there is a command to query the label for a group, the only possible values are 0-15 and therefore, 0-15 refers to group 0-15

for that command.

Note: When targeting DALI Instances you must know the address the instance is associated with and the instance number.
Typically the instance number (or scene number) goes in the Basic Frame Type Data Lo field.

12

Chapter 1. Third Party Interface Documentation

zencontrol Docs

Special Values

Instance Binary States

All the states in this table are aliased to either L0 or HI. These are used when sending commands to an instance.

Warning: Note that logical low and logical high are not 0 and 1.

State Value | Description

UNKNOWN 0x00 | Stateis unknown

LO 0x01 | Logical Low state

HI 0x02 | Logical High state

INSTANCE_SHORT_PRESS | HI Button short-press

INSTANCE_LONG_PRESS LO Button long-press

INSTANCE_ON HI On state

INSTANCE_OFF LO Off state

INSTANCE_OCCUPIED HI A sensor indicates that the area is occupied
INSTANCE_UNOCCUPIED | LO A sensor indicates that the area is unoccupied

Instance Types

These are returned from gUERY_INSTANCES_BY_ADDRESS.Instances are logical objects that represent input devices in DALI,
and are part of later DALI standards such as IEC 62386-301 (push-button instances).

Type Value | Description

PUSH_BUTTON 0x01 Expect INSTANCE_SHORT_PRESS and INSTANCE_LONG_PRESS events
ABSOLUTE_INPUT 0x02 | E.g aslider or dial. Expect ABSOLUTE_INPUT_EVENT events
OCCUPANCY_SENSOR 0x03 | Motion sensor. Expect INSTANCE_OCCUPIED events.
LIGHT_SENSOR 0x04 | Light sensor. Events not currently forwarded.
GENERAL_PURPOSE_SENSOR | 0x06 | E.g water flow or power sensor. Events not currently forwarded.

Note: System variables have event support after v2.1.32. You can target a system variable with any of the instance types.
This is best utilised with quantity based instances (light sensor, absolute input, and general purpose sensors).

Instance Status & State Bitmasks

These come from the QUERY_INSTANCES_BY_ADDRESS command.
State Bits

State information is encoded into the 8 bits of a byte. These values are largely internal to the control system and not to be
used by the user.

Not to be confused with DAL/ Status Masks.

Bit Description
0 (LSB) | Is selected
1 Is_disabled

2 No Targets or has invalid target
3 Is soft disabled

4 Has System Variable Targets

5

6

7

Has database operations to do

(MSB) | -

TPI Advanced 13

zencontrol Docs

Status Bits

Status information is encoded into the 8 bits of a byte.

Bit Description

0 (LSB) | Instance Error
1 Instance Active
2 -

3 -

4 -

5 -

6 -

7 (MSB) | -

TPI Event Types

TPI Event types are found in TP/ Event multicast frames. Data relating to the event can be found in the Data section of the
frame. The target for the event can be found in the Target section of the frame.

Event Value | Description

BUTTON_PRESS_EVENT 0x00 | Button has been pressed

BUTTON_HOLD_EVENT 0x01 | Button has been pressed and is being held down
ABSOLUTE_INPUT_EVENT 0x02 | Absolute input has changed.
LEVEL_CHANGE_EVENT 0x03 | Arc Level on an Address target has changed
GROUP_LEVEL_CHANGE_EVENT 0x04 | Arc Level on a Group target has changed
SCENE_CHANGE_EVENT 0x05 | Scene has been recalled

OCCUPANCY_EVENT 0x06 | An occupancy sensor has been triggered, area is occupied.
SYSTEM_VARIABLE_CHANGED_EVENT | 0x07 | A system variable has changed
COLOUR_CHANGED_EVENT 0x08 | A Tc, RGBWAF or XY colour change has occurred
PROFILE_CHANGED_EVENT 0x09 | The active profile on the controller has changed.

Note: More may be appended to this list in the future.

Instance Events

Events that are associated with DALI instances (eg. button presses) will have an instance number as the first byte of data.

TPI Event Modes

TPI Event queries may indicate the active modes in the response. Multiple modes can be active at once. Use bitwise logic
and checks to set and inspect the modes.

Mode Flag Value | Description

DISABLED 0x00 TPI Events won't be transmitted
ENABLED 0x01 TPI Events will be transmitted
DALI_EVENT_FILTERING 0x02 DALI TPI Event filters are active
ENABLE_UNICAST_MODE 0x40 Enable Unicast Mode
DISABLE_MULTICAST_MODE | 0x80 Disable Multicast (enabled by default)

DMX Channel Block Types

Type Value | Description
DMX_BLOCK_INTERSECTION | 0x00 | Perform a boolean intersection on the channel range indexes
DMX_BLOCK_DIFFERENCE 0x01 | Perform a boolean difference on the channel range indexes

14 Chapter 1. Third Party Interface Documentation

zencontrol Docs

DMX Channel Personality Types

Type Value | Description

PERSONALITY_DIM_8BIT 0x00 | 8 bit dimming

PERSONALITY_DIM_16BIT_BE | 0x01 | 16 bit dimming, with values expressed as Big Endian. Not yet implemented.
PERSONALITY_DIM_16BIT_LE | 0x02 | 16 bit dimming, with values expressed as Little Endian. Not yet implemented.

Note: 8 Bit dimming 0x00is probably what you want in pretty much all cases. Some DMX fitting manufacturers will do their
own smoothing between 8bit channel values.

DMX Channel Behaviour Masks

These describe whether a channel is expected to be an input or an output. It's possible for a channel to indicate both values
(0x03) because these vales are bitwise masks.

Type Value | Description
DMX_BEHAVIOUR_TRIGGER | 0x01 | Atrigger is an input which may be used for DMX --> DALI or other things.
DMX_BEHAVIOUR_OUTPUT | 0x02 | DMX output channel.

DALI Status Masks

These are returned from DALI_QUERY_CONTROL_GEAR_STATUS for Control Gear.

Name Value | Description

DALI_STATUS_CG_FAILURE 0x01 | Control Gear Failure
DALI_STATUS_LAMP_FAILURE 0x02 | Lamp Failure

DALI_STATUS_LAMP_POWER_ON 0x04 | Power On

DALI_STATUS_LIMIT_ERROR 0x08 | Limit error (an Arc-level > Max or < Min requested)
DALI_STATUS_FADE_RUNNING 0x10 | A fade is running on the light
DALI_STATUS_RESET 0x20 | Device has been reset
DALI_STATUS_MISSING_SHORT_ADDRESS | 0x40 | Device hasn't been assigned a short-address
DALI_STATUS_POWER_FAILURE 0x80 | Power failure has occurred

TPI Advanced 15

zencontrol Docs

DALI Control Gear Type Masks

Returns a 32bit number that encompasses all device types that the control device has. The assembly of the number is little
endian.

For example, if we get back 0x02, 0x01, 0x00, 0x00, the 32 bit number would be 0x00000102, indicating that the device is
an EMERGENCY and COLOUR CONTROL.

These mask values are returned from DALI_QUERY_CG_TYPE.

Name Value Device Type | Description
DALI_HW_FLUORESCENT 0x01 0 A fluorescent light
DALI_HW_EMERGENCY 0x02 1 An emergency light
DALI_HW_DISCHARGE 0x04 2 -

DALI_HW_HALOGEN 0x08 3 A halogen light
DALI_HW_INCANDESCENT 0x10 4 An incandescent light
DALI_HW_DC 0x20 5 Device uses DC power
DALI_HW_LED 0x40 6 A LED Light
DALI_HW_RELAY 0x80 7 A relay device
DALI_HW_COLOUR_CONTROL 0x100 8 Device has colour control/Type 8 capability
DALI_HW_LOAD_REFERENCING 0x8000 15 -
DALI_HW_THERMAL_GEAR_PROTECTION | 0x10000 | 16 -
DALI_HW_DIMMING_CURVE_SELECTION 0x20000 | 17 -

Note: Some values are not yet documented.

16 Chapter 1. Third Party Interface Documentation

zencontrol Docs

Commands

All Commands are linked to examples.

Basic Commands

The request frame type varies from command to command, however most use the Basic frame type. All TPl Advanced

commands reply with the TP/ Advanced Response frame type.

Each Command has an associated example in TP/ Advanced Examples.

The following commands all use the Basic frame type.

Command Value | Description

QUERY_GROUP_LABEL 0x01 | Query the label for a DALI Group by Group Number
QUERY_SCENE_LABEL 0x02 | Query the label for a DALI Scene by Scene Number
QUERY_DALI_DEVICE_LABEL 0x03 | Query the label for a DALI ECD or ECG by address
QUERY_PROFILE_LABEL 0x04 | Query the label for a controller profile
QUERY_CURRENT_PROFILE_NUMBER 0x05 | Query the current profile number
TRIGGER_SDDP_IDENTIFY 0x06 | Trigger a Control4 SDDP Identify
QUERY_TPI_EVENT_EMIT_STATE 0x07 | Query whether TPI Events are enabled or disabled
ENABLE_TPI_EVENT_EMIT 0x08 | Enable or disable TPI Events
QUERY_GROUP_NUMBERS 0x09 | Query the DALI Group numbers
QUERY_SCENE_NUMBERS O0x0A | Query the DALI Scene numbers
QUERY_PROFILE_NUMBERS 0x0B | Query all available Profile numbers
QUERY_OCCUPANCY_INSTANCE_TIMERS 0x0C | Query an occupancy instance for its timer values
QUERY_INSTANCES_BY_ADDRESS 0x0D | Query information of instances associated with an address
QUERY_GROUP_BY_NUMBER 0x12 | Query DALI Group information by Group Number
QUERY_SCENE_BY_NUMBER 0x13 | Query DALI Scene information by Scene Number
QUERY_SCENE_NUMBERS_BY_ADDRESS 0x14 | Query for DALI Scenes an address has levels for
QUERY_GROUP_MEMBERSHIP_BY_ADDRESS 0x15 | Query DALI Group membership by address
QUERY_DALI_ADDRESSES_WITH_INSTANCES 0x16 | Query DALI addresses that have associated instances
QUERY_DMX_DEVICE_NUMBERS 0x17 | Query DMX Device information
QUERY_DMX_DEVICE_BY_NUMBER 0x18 | Query for DMX Device information by channel number
QUERY_DMX_LEVEL_BY_CHANNEL 0x19 | Query DMX Channel value by Channel number
QUERY_SCENE_NUMBERS_FOR_GROUP O0x1A | Query Scene Numbers attributed to a group
QUERY_SCENE_LABEL_FOR_GROUP 0x1B | Query Scene Labels attributed to a group scene
QUERY_CONTROLLER_VERSION_NUMBER 0x1C | Query Controller Version Number
QUERY_CONTROL_GEAR_DALI_ADDRESSES Ox1D | Query Control Gear present in database
QUERY_SCENE_LEVELS_BY_ADDRESS Ox1E | Query Scene level values for a given address
QUERY_DMX_DEVICE_LABEL_BY_NUMBER 0x20 | Query DMX Device for its label
QUERY_INSTANCE_GROUPS 0x21 Query group targets related to an instance
QUERY_DALI_FITTING_NUMBER 0x22 | Query the fitting number for control gear/devices
QUERY_DALI_INSTANCE_FITTING_NUMBER 0x23 | Query the fitting number for an instance
QUERY_CONTROLLER_LABEL 0x24 | Query the label of the controller
QUERY_CONTROLLER_FITTING_NUMBER 0x25 | Query the fitting number of the controller itself
QUERY_IS_DALI_READY 0x26 | Query whether DALI is ready (or has a fault)
QUERY_CONTROLLER_STARTUP_COMPLETE 0x27 | Query if the controller startup sequence has completed
QUERY_OPERATING_MODE_BY_ADDRESS 0x28 | Query operating mode for the device at the given address
OVERRIDE_DALI_BUTTON_LED_STATE 0x29 | Override the button LED state on a DALI button
QUERY_LAST_KNOWN_DALI_BUTTON_LED_STATE | 0x30 | Query the last known button LED state on a DALI button
DALI_ADD_TPI_EVENT_FILTER 0x31 | Request that filters be added for DALI TPI Events
QUERY_DALI_TPI_EVENT_FILTERS 0x32 | Query DALI TPI Event filters on a address
DALI_CLEAR_TPI_EVENT_FILTERS 0x33 | Request that DALI TPI Event filters be cleared
QUERY_DALI_COLOUR 0x34 | Query the Colour (RGBWAF or TC) on a DALI target
QUERY_DALI_COLOUR_FEATURES 0x35 | Query the DALI colour features/capabilities of gear
SET_SYSTEM_VARIABLE 0x36 | Set a system variable value

continues on next page

TPI Advanced

17

zencontrol Docs

Table 1 - continued from previous page

Command Value | Description
QUERY_SYSTEM_VARIABLE 0x37 | Query system variable
QUERY_DALI_COLOUR_TEMP_LIMITS 0x38 | Query DALI Colour Temp max/min and step in Kelvin
SET_TPI_EVENT_UNICAST_ADDRESS 0x40 | Seta TPI Events unicast address and port
QUERY_TPI_EVENT_UNICAST_ADDRESS 0x41 | Query TPI Events State, unicast address and port
QUERY_SYSTEM_VARIABLE_NAME 0x42 | Query the name of a system variable (Pro controllers)
QUERY_PROFILE_INFORMATION 0x43 | Query profile numbers, behaviours etc
QUERY_COLOUR_SCENE_MEMBERSHIP_BY_ADDR | 0x44 | Query scenes a device has colour data for (Pro controllers)
QUERY_COLOUR_SCENE_0_7_DATA_FOR_ADDR 0x45 | Query colour scene data for 0-7 (Pro controllers)
QUERY_COLOUR_SCENE_8_11_DATA_FOR_ADDR 0x46 | Query colour scene data for 8-11 (Pro controllers)
DALI_INHIBIT 0xAO0 | Inhibit sensors from affecting a DALI target for time
DALI_SCENE OxA1 | Call a DALI Scene on a address
DALI_ARC_LEVEL 0xA2 | Setan Arc-Level on a address
DALI_ON_STEP_UP 0xA3 | On-if-Off and Step Up on a address
DALI_STEP_DOWN_OFF 0xA4 | Step Down and off-at-min on a address
DALI_UP 0xA5 | Step Up on a address
DALI_DOWN 0xA6 | Step Down on a address
DALI_RECALL_MAX OxA7 | Recall the max level on a address
DALI_RECALL_MIN 0xA8 | Recall the min level on a address
DALI_OFF OxA9 | Set a address to Off
DALI_QUERY_LEVEL OxAA | Query the the level on a address
DALI_QUERY_CONTROL_GEAR_STATUS OxAB | Query the status data on a address, group or broadcast
DALI_QUERY_CG_TYPE OxAC | Query Control Gear type data on a address
DALI_QUERY_LAST_SCENE OxAD | Query Last heard DALI Scene
DALI_QUERY_LAST_SCENE_IS_CURRENT OxAE | Query if target has changed since last heard scene
DALI_QUERY_MIN_LEVEL OxAF | Query the min level for a DALI device
DALI_QUERY_MAX_LEVEL 0xBO | Query the max level for a DALI device
DALI_QUERY_FADE_RUNNING 0xB1 | Query whether a fade is running on a address
DALI_ENABLE_DAPC_SEQ 0xB2 | Begin a DALI DAPC sequence
VIRTUAL_INSTANCE 0xB3 | Perform an action on a Virtual Instance
DALI_CUSTOM_FADE 0xB4 | Call a DALI Arc Level with a custom fade-length
DALI_GO_TO_LAST_ACTIVE_LEVEL 0xB5 | Command DALI addresses to go to last active level
QUERY_VIRTUAL_INSTANCES 0xB6 | Query for virtual instances and their types
QUERY_DALI_INSTANCE_LABEL 0xB7 | Query DALI Instance for its label
QUERY_DALI_EAN 0xB8 | Query the DALI European Article Number at an address
QUERY_DALI_SERIAL 0xB9 | Query the Serial Number at a address
CHANGE_PROFILE_NUMBER 0xCO | Request a Profile Change on the controller
DALI_STOP_FADE 0xC1 | Request arunning DALI fade be stopped.
Other Commands

Command Frame Type | Value | Description

DALI_COLOUR | DALI Colour | OxOE | Setthe DALI level and colour of a DALI colour light

DMX_COLOUR | DMX Colour | 0x10 | Send values to a set of DMX channels and configure fading

18

Chapter 1. Third Party Interface Documentation

zencontrol Docs

TPI Advanced Examples

QUERY_GROUP_LABEL

Frame Type: Basic

Get the label for a DALI Group. Group is expressed as 0-15, not the addressing scheme presented earlier in the document.
Response data can be up to 64 bytes. Group labels are limited to this size in the cloud. If there is no label, response will
REPLY_ANSWER with 0 for data length.

Request

Response with Label

Response data contains Foo as the label for Address 10.

Response data for no label would be as follows.

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x01 Command
3 0x0A Group 0-15 (0x0A=G10)
4 0x00 -
5 0x00 -
6 0x00 -
7 OxOF Checksum
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num
2 0x03 Data Length
3-5 0x466F6F | Foo
6 OxE4 Checksum
Byte Index | Byte Value | Description
0 0xA2 Response Type (REPLY_NO_ANSWER)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xA2 Checksum

Examples

19

zencontrol Docs

QUERY_SCENE_LABEL

Frame Type: Basic

Get the label for DALI Scene 10. As this has no context of which group is associated, this shouldn’t be used and is only left
in for legacy purposes. Use QUERY_SCENE_LABEL_FOR_GROUP. Max 64 characters. Also note that the controller supports

scenes 0-12 for user usage.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x02 Command
3 0x0A Scene Number 0-12 (0x0A - Scene 10)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x0C Checksum
Response with Label
Response data contains Foo as the label for Scene 10.
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num
2 0x03 Data Length
3-5 0x466F6F | Foo
6 OxE4 Checksum

QUERY_DALI_DEVICE_LABEL

Frame Type: Basic

Get the label for a DALI device (control gear and control device). If the device has no label, response will be type RE-

PLY_ERROR. Max 64 characters.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x03 Command
3 0x0A Address 0-63 CG, 64-127 for CD
4 0x00 -
5 0x00 -
6 0x00 -
7 0x0D Checksum

Response with Label

Response data contains Foo as the label for device at Address 10.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x03 Data Length

3-5 0x466F6F | Foo

6 OxE4 Checksum

20

Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_PROFILE_LABEL

Frame Type: Basic

Get the label for the Profile given a Profile number.

Note: Profile Numbers are 2 bytes long.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x04 Command
3 0x00 -
4 0x00 -
5 0x00 Data Mid (Upper byte if needed)
6 0x01 Data Lo (Profile ID: 0x01)
7 0x01 Checksum

Response with Label

Response data contains Foo as the label for Profile 1.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x03 Data Length

3-5 0x466F6F | Foo

6 OxE4 Checksum

Examples

21

zencontrol Docs

QUERY_CURRENT_PROFILE_NUMBER

Frame Type: Basic

Get the current/active Profile number. Useful for providing to the Profile Label Command.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x05 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x01 Checksum

Response with Profile number

Response data contains 0x0001 as the number for the current active profile (Profile 1 for example).

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x02 Data Length

3 0x00 Data profile ID Hi Byte

4 0x01 Data profile ID Lo Byte

5 0xA2 Checksum

Note: Profile Ids are 2 bytes long.

22

Chapter 1. Third Party Interface Documentation

zencontrol Docs

TRIGGER_SDDP_IDENTIFY

Frame Type: Basic

Trigger a Control4 SDDP Identify command. This causes the controller to be displayed/identified clearly within Control4. If
feature not paid for, will respond with ERROR_PAID_FEATURE.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x05 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x01 Checksum
Response

Just OK. No extra data.

Byte Index | Byte Value | Description

0 0xAO0 Response Type (0K)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xAO0 Checksum

QUERY_TPI_EVENT_EMIT_STATE

Frame Type: Basic

Get the current TPI Event multicast emitter state.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x07 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x03 Checksum

Response with boolean value

Responses return current state in the data. 0x01 indicates that TPI Events are enabled for transmit or 0x00 for disabled.
Values > 1 indicate that event filtering is active. See TP/ Event Modes for the specific modes that may be active.

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x01 Data Length

3 0x01 State (Enabled in this case)

4 0xA1 Checksum

Examples 23

zencontrol Docs

DALI_ADD_TPI_EVENT_FILTER

Frame Type: Basic

Add DALI event filters to stop specific events from being broadcast as TPI Events. Filters are listed in TP/ Event Types. You
must specify a bitmask of events. To filter all events you can use a mask of 0xFFFF. To filter a DALI ECD you must specify
the instance number to filter on or use 0xFF for ECGs.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x31 Command
3 0x00 Address 0
4 OxFF Instance Number
5 0x0T1 Event Mask Hi
6 0x08 Event Mask Lo
7 0xC3 Checksum

Event bitmask is formed by left bit-shifting the event type number (from TP/ Event Types) and if you want to add multiple
events to the mask doing a bitwise OR on the mask. To silence LEVEL_CHANGE_EVENT and COLOUR_CHANGED events the mask
can be calculated like this:

level_change_event = 3
colour_changed_event = 8
event_mask = (1 << colour_changed_event) | (1 << level_change_event)

event_mask is 264 which looks like 0b100001000 in binary. Notice the events marked positionally by 1's. 264 is too large to
fitin a single byte so it must be split across 2 bytes. Upper byte will be 0x01 and lower byte will be 0x08.

Response

A successful addition of a filter.

Byte Index | Byte Value | Description

0 0xA0 Response Type (REPLY_0K)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA0 Checksum

24 Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_CLEAR_TPI_EVENT_FILTERS

Frame Type: Basic

Clear DALI event filters. Events are listed in TP/ Event Types. You must specify a bitmask of events. This examples clears
LEVEL_CHANGE_EVENT and COLOUR_CHANGED events from DALI address 0. To clear all events use 0xFFFF and all events for
this address can be emitted as TPI events again.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x33 Command
3 0x00 Address
4 OxFF Instance number
5 0x01 Event Mask Hi
6 0x08 Event Mask Lo
7 0xC1 Checksum

Note: For calculating the event mask see the note in the DALI_ADD_TPI_EVENT_FILTER example above.

Response

A successful clearing of a filter. Note that if no such filter exists, you will receive a REPLY_NO_ANSWER

Byte Index | Byte Value | Description

0 0xAO0 Response Type (REPLY_OK)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xAQ Checksum

Examples 25

zencontrol Docs

QUERY_DALI_TPI_EVENT_FILTERS

Frame Type: Basic

Query active DALI event filters. Also returns the TPl event modes active in the first byte. ECG filters must specify an instance
number of OXFF, and ECDs must have their instance number specified (unless querying all events for the ECD). If address
OxFF and instance number OxFF is specified, will return ALL active tpi events on all addresses. As the data payload can only
be up to 64 bytes and there are up to 64 event filters, it may be necessary to query several times. The parameter “Result to
start at” allows paging of results. For example, if you have all 64 event filters active, you will receive results 0-14 in the first
response, you then specific to start at 15 and receive 15-29. To complete the set, you would request 30, 45, 60 as starting

numbers or until you receive (NO_ANSWER) for no more active filters.

Events are listed in TP/ Event Types.

Request

Query for all event filters associated with address 0

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced

1 0x00 Seqg. Num

2 0x32 Command

3 0x00 Address

4 0x00 Result to start at

5 0x00 -

6 OxFF Instance Number (all instances)
7 0xC9 Checksum

Response

An 2 result event mask for the given address

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x09 Data Length

3 0x08 TPI Event Modes Active

4 0x02 Result 0 Address

5 0x00 Result 0 Instance Number

6 0x03 Result 0 Event mask upper byte
7 0x04 Result 0 Event mask lower byte
8 0x02 Result 1 Address

9 0x01 Result 1 Instance Number

10 0x05 Result 1 Event mask upper byte
1 0x06 Result 1 Event mask lower byte
12 0xA3 Checksum

Event filter enabled status

This 2-byte response is a 16bit event mask split across two bytes. The 16-bit value is 264.

To check if an event if flagged in an event mask you can use a bitwise AND against an event mask containing the events
you want to check for. If the result is greater than 0 then the event must be present in the query result.

event_mask = (upper_byte << 8) | lower_byte

colour_change_event = 8

events_to_check_for = (1 << colour_change_event)

if ((events_to_check_for & event_mask) > 0):
print("Colour change events are being filtered out.")

26

Chapter 1. Third Party Interface Documentation

zencontrol Docs

ENABLE_TPI_EVENT_EMIT

Frame Type: Basic

Enable or disable TPl Advanced UDP event messages. By default these event messages are sent using Multicast, however
Unicast can be configured and both modes can be used at the same time if necessary.

See SET_TPI_EVENT_UNICAST_ADDRESS for more on how to enable Unicast mode.

Request

Use 0x01 to enable TPI Events and 0x00 in a Basic frame Address position to turn TPI Events on/off. By default, TPl Events
will be in Multicast Mode, but not enabled. When a controller boots you must re-assert whether events should be enabled
as modes and filters aren't persistent.

For more information on the Event Mode values see TPl Event Modes.

Tip: Consider using QUERY_TPI_EVENT_EMIT_STATE as a method to periodically “ping” the controller and if necessary
re-assert the state depending on the response.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced

1 0x00 Seq. Num

2 0x08 Command

3 0x01 Enable (or 0x00 for disable). See TPI Event Modes for more values.
4 0x00 -

5 0x00 -

6 0x00 -

7 0x0D Checksum

Response with boolean value

Responses return current state in the data. 0x01 indicates that TPI Events are enabled for transmit or 0x00 for disabled.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x01 Data Length

3 0x01 State (Enabled in this case). See TP/ Event Modes.
4 0xA1 Checksum

Examples

27

zencontrol Docs

SET_TPI_EVENT_UNICAST_ADDRESS

Frame Type: Dynamic

TPI Events Unicast Mode is useful if:
* Your control system can’t support Multicast.
+ You do not want to use Multicast on your network or have particular security concerns.
+ You want to capture and process events entirely in your own system.

Typically you should configure Unicast using this command before you enable Unicast using ENABLE_TPI_EVENT_EMIT
with an Enable value of 0x41 which is BITWISE_OR(0x40 | 0x01) which are the byte values for Unicast mode and TPI Events
general enable.

Request

This request configures TPI Events for Unicast to be sent to 192.168.10.10 on port 8811.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0x40 Command

3 0x06 Data Length

4 0x22 Port Upper Byte

5 0x6B Port Lower Byte

6 0xCO0 IP4 Byte 0 (192.x.x.x)
7 0xA8 IP4 Byte 1 (x.168.x.x)
8 0x0A IP4 Byte 2 (x.x.10.x)
9 0x0A IP4 Byte 3 (x.x.x.10)
10 0x63 Checksum

Response A simple “OK” response.

Byte Index | Byte Value | Description

0 0xAO0 Response Type (REPLY_OK)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xAQ Checksum

28 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_TPI_EVENT_UNICAST_ADDRESS

Frame Type: Basic

Returns the TPI Event emit state, Unicast Port and Unicast Address.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x41 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x45 Checksum

Response An answer that shows TPI Unicast mode enabled (and Multicast not disabled), Port 8811 and 192.168.10.10 Ad-
dress configured.

Byte Index | Byte Value | Description

0 OxAT Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x07 Data Length

3 0x41 TPI Event State flags (Unicast enabled 0x40, TPI Events enabled 0x01)
4 0x22 Port Upper Byte

5 0x6B Port Lower Byte

6 0xCO0 IP4 Byte 0 (192.x.x.x)

7 OxA8 IP4 Byte 1 (x.168.x.x)

8 0x0A IP4 Byte 2 (x.x.10.x)

9 0x0A IP4 Byte 3 (x.x.x.10)

10 0xCC Checksum

Examples 29

zencontrol Docs

QUERY_GROUP_NUMBERS

Frame Type: Basic

Query a list of DALI Group Numbers present on the controller. Originally, this was a list of any group that a control gear
present in the database is a member of. This now also contains groups that are set up in the groups section on the cloud.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x09 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x0D Checksum

Response with Group Numbers

This response contains two Group Number values 0x07 and 0xOF. Note that this a variable sized response dependent on
how many groups are mentioned on the bus.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x02 Data Length (number of groups in this case)
3 0x07 First Group

4 0xO0F Second Group

5 0xAB Checksum

30 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_DALI_COLOUR

Frame Type: Basic

Query colour information from a DALI address. This reports back the colour type (TC, RGBWAF or possibly others in the
future) and the bytes that represent the values for that colour type.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x34 Command
3 0x00 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0x30 Checksum

Response with Colour Data

This response contains RGBWAF data - just red. See theColour Type section in the DALI Colour Frame for a list of colour
modes.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x07 Data Length (varies based on Colour Mode)
3 0x80 Colour Mode Colour Type section in the DALI Colour Frame for a list of colour modes.
4 OxFF R - Red Byte

5 0x00 G - Green Byte

6 0x00 B - Blue Byte

7 0x00 W - White Byte

8 0x00 A - Amber Byte

9 0x00 F - Freecolour Byte

10 0xD9 Checksum

QUERY_SCENE_NUMBERS

Frame Type: Basic

Query a list of DALI Scene Numbers. As this has no context of which group is associated, this shouldn’t be used and is only
left in for legacy purposes. Use QUERY_SCENE_NUMBERS_FOR_GROUP

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x0A Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x0E Checksum

Response with Scene IDs

This response contains two Scene Number values 0x07 and OxOF. Scene Numbers are one byte long.

Examples 31

zencontrol Docs

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)

1 0x00 Seqg. Num

2 0x02 Data Length (number of scenes in this case)
4 0x07 First Scene

6 OxOF Second Scene

7 OxAB Checksum

32

Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_PROFILE_LNUMBERS

Frame Type: Basic
Query a list of Profile Numbers. Superceded by QUERY_PROFILE_INFORMATION, which has additional information.

Useful for providing to the Profile Label Command. Note: Profiles MUST be assigned to each controller on the cloud (As-
signment & Logic -> Control Assignment Section).

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x0B Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 OxOF Checksum

Response with Profile Numbers

This response contains two Profile Numbers values 0x07 and 0xOF. Profile Numbers are two bytes long.

Byte Index | Byte Value | Description

0 OxA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x04 Data Length

3 0x00 First Profile Hi Byte

4 0x07 First Profile Lo Byte

5 0x00 Second Profile Hi Byte

6 O0x0F Second Profile Lo Byte

7 0xA2 Checksum

Examples 33

zencontrol Docs

QUERY_OCCUPANCY_INSTANCE_TIMERS

Frame Type: Basic
Query Occupancy Instance timers.
Request

Query an Occupancy Instance for timer values. Requires a Control Device DALI Address (64-127) and the instance number
(0-31) of the occupancy sensor instance. Last detected value is the value in seconds since the last event message depicting
OCCUPIED status. Only counts to 0xFF (255) seconds. It should be noted that the deadtime, hold and report times are set by
the controller. Report time is set based on the quantity of occupancy sensors on the line (more occupancy sensors, longer
report times).

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced

1 0x00 Seq. Num

2 0x0C Command

3 0x40 Address (0x40 = CDAOQ)

4 0x00 -

5 0x00 -

6 0x01 Instance number for occupancy sensor
7 0x49 Checksum

Response with Occupancy Instance Timers

This response contains Timer data for the occupancy instance with an Number of 0x01.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x05 Data Length

3 0x05 Deadtime (5 seconds)

4 0x3C Hold (60 seconds)

5 0x78 Report (120 seconds)

6 0x00 Last Detect Hi byte (never populated, only counts to 255 now)
7 OxFE Last Detect Lo Byte (254 seconds ago.)

8 OxE5 Checksum

34 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_INSTANCES_BY_ADDRESS

Frame Type: Basic
Query a DALI address to see if it has associated Instances. Returns Instance metadata.

See also Query DALI Addresses with Instances command which may be a helpful command for finding targets for this com-
mand.

Request

Query DALI Address 65 to see which Instances are associated with this address.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0x0D Command

3 0x41 Address

4 0x00 -

5 0x00 -

6 0x00 -

7 0x48 Checksum

Response with Instance metadata
Responses return 0 or more four byte Instance descriptions.

This example shows a single instance returned. On a reply with multiple instances associated with an address bytes 3- 6 (4

bytes) would be repeated but with the appropriate values for each instance on the address, and would have a Data Length
of 8.

Byte Index | Byte Value | Description

0 OxAT Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x04 Data Length (divide by 4 to get number of Instances)
3 0x01 Instance Number

4 0x01 Instance Type. (See Instance Types)

5 0x00 Status Bits. (See Instance Status & State Bitmasks)
6 0x00 State Bits. (See Instance Status & State Bitmasks)

7 0xA5 Checksum

Examples 35

zencontrol Docs

QUERY_OPERATING_MODE_BY_ADDRESS

Frame Type: Basic

Query the DALI operating mode given an address. Operating modes are manufacturer dependant in functionality. If the
device does not exist in the database, ERROR_UNKNOWN_TARGET will be returned.

Request

Query DALI Address 126 to see what the operating mode is.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced

1 0x00 Seq. Num

2 0x28 Command

3 Ox7E Address (126, control device A62)
4 0x00 -

5 0x00 -

6 0x00 -

7 0x52 Checksum

Response with Operating Mode

This is an example response with the default operating mode (0). If Data had a value of 0x64 then the operating mode would
be 0x64.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x01 Data Length

3 0x00 Data: Operating Mode 0

4 0xA0 Checksum

36 Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_COLOUR

Frame Type: DALI Colour

Send a DALI Colour and Arc command. This command tells a DALI Colour device (eg. DALI Device Type 8 in IEC 62386) to

go show a colour.

This is the only TPl Advanced command that does not require a Pro-series controller.

Request

Set a RGBWAF colour (Red) on DALI address 1.

Each channel of the colour space gets a byte after Colour Type. If the XY colour space is used, then the length of the entire

message would be 11 bytes long.

Response

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x0E Command
3 0x01 Address
4 OxFE Arc Level
5 0x00 Colour Type
6 OxFF Colour Red
7 0x00 Colour Green
8 0x00 Colour Blue
9 0x00 Colour White
10 0x00 Colour Amber
1 0x00 Colour Freecolour
12 0x0A Checksum
Byte Index | Byte Value | Description
0 0xAO0 Response Type (0K)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xA0 Checksum

If there is an error response type and Data of 0x01 then this is likely because the system was busy, so try again and it may

work the next time.

Examples

37

zencontrol Docs

DMX_COLOUR

Frame Type: DMX Colour

Send a DMX Colour and Fade command. This command sets up a fade task which transitions from the current values to

your specified values.

See DMX Colour Request Frame for more information.

Request

Send a command to repeat 0xFF 0x00 0x00 from channel 1to channel 255. A fade time of 3 seconds is set in the command.
If you have RGB lights set up with their channels aligned to every 3rd address this will cause them to transition to be Red
from whatever colour they currently are over the next 3 seconds. This will only occur on a single universe.

Note: Ideally DMX universes shouldn't use the full 512 channels because a smaller universe allows the DMX refresh rate to
be higher than 44 Hz. Once you issue a fade task that changes values across the entire universe, you can't (currently) shrink

it back down to a smaller universe.

Byte Index | Byte Value | Description
0 0x04 Start Byte TPl Advanced
1 0x00 Seq. Num
2 0x10 Command
3 0x01 Fade ID
4 0x00 Universe Mask Hi
5 0x01 Universe Mask Lo (Universe 1)
6 0x00 Start channel Hi
7 0x01 Start channel Lo (1)
8 0x02 Stop channel Hi
9 0x00 Stop channel Lo ((Hi << 8) | (Lo) = 512)
10 0x01 Address divisor 1 (distribute pattern value to every channel in range)
1 0x00 Block Mode - Intersection (See DMX Channel Block Types)
12 0x00 Personality Type - 8 Bit dimming. Default. See DMX Personality Types
13 0x00 Fade Time mode
14 0x00 Fade Time Hi
15 0x0B Fade Time Mid
16 0xB8 Fade Time Lo (3000 milliseconds)
17 0x01 Fade Type A - Linear fade
18 0x00 Fade Type B - None
19 0x03 Data Length (3, for 3 channels, RGB)
20 OxFF Red
21 0x00 Green
22 0x00 Blue
23 0x58 Checksum
Response
Byte Index | Byte Value | Description
0 0xAO0 Response Type (0K)
1 0x00 Seqg. Num
2 0x00 Data Length
3 0xAO0 Checksum

If there is an error response type and Data of 0x01 then this is likely because the system was busy, so try again and it may

work the next time.

38

Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_GROUP_BY_NUMBER

Frame Type: Basic

Query Group information given a DALI Group Number. If there are no members of the group, the response will be (NO_ANSWER).

Request

Response with Group Information

This response contains group data.

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x12 Command
3 0x01 Group Number 0-15 (0=G0, 1=G1)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x17 Checksum
Byte Index | Byte Value | Description
0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num
2 0x03 Data Length
3 0x01 DALI Group Number
4 0x01 Group Occupancy Status (Boolean)
5 OxFE Group Actual Level (254)
6 0xA2 Checksum

Examples

39

zencontrol Docs

QUERY_SCENE_BY_NUMBER

Frame Type: Basic

Query Group information given a Scene Number. As this has no context of which group is associated, this shouldn’t be used

and is only left in for legacy purposes.

Request

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0x13 Command

3 0x01 Scene Number

4 0x00 -

5 0x00 -

6 0x00 -

7 0x16 Checksum

Response with Scene Information

This response contains scene data.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x02 Data Length

3 0x04 DALI Scene number

4 0x02 DALI Group number (or 0xFF for no group)
5 0xA5 Checksum

40

Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_SCENE_NUMBERS_BY_ADDRESS

Frame Type: Basic

Query DALI Scene numbers associated with an DALI address. If a device has a level under OxFF for a given scene, it will be
listed in the response here. If the device has NO scenes, the answer will be NO_ANSWER (0xA?2)

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x14 Command
3 0xOF Address (15)
4 0x00 -
5 0x00 -
6 0x00 -
7 Ox1F Checksum

Response with Scene Numbers

This response contains three Scene numbers.

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x03 Data Length

3 0x04 DALI Scene 4

4 0x07 DALI Scene 7

5 0x08 DALI Scene 8

6 0xA9 Checksum

QUERY_SCENE_LEVELS_BY_ADDRESS

Frame Type: Basic

Query DALI Levels associated with an DALI address. All 16 scene values for a given control gear will be responded with. If
a control gear has a value of OxFF for the scene, it won't react (is not part of) that scene.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x02 Seq. Num
2 Ox1E Command
3 0x02 Address (2)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x1A Checksum

Response with Scene Levels

This response contains all level values for the 16 dali scenes supported by a control gear.

Examples el

zencontrol Docs

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x10 Data Length (16 bytes)
3 0x83 DALI Scene 0 Level

4 0x89 DALI Scene 1 Level

5 OxF4 DALI Scene 2 Level

6 OxE8 DALI Scene 3 Level

7 0xB8 DALI Scene 4 Level

8 0x08 DALI Scene 5 Level

9 0x49 DALI Scene 6 Level

10 0xA3 DALI Scene 7 Level

11 0xB7 DALI Scene 8 Level

12 0x62 DALI Scene 9 Level

13 0xC3 DALI Scene 10 Level
14 Ox6E DALI Scene 11 Level
15 0x28 DALI Scene 12 Level
16 OxFF DALI Scene 13 Level (no scene)
17 0x17 DALI Scene 14 Level
18 OxEF DALI Scene 15 Level
19 0xA9 Checksum

QUERY_GROUP_MEMBERSHIP_BY_ADDRESS

Frame Type: Basic

Query the groups that a control gear is a member of.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x15 Command
3 0xOF Address (15)
4 0x00 -
5 0x00 -
6 0x00 -
7 Ox1E Checksum

Response with bitwise group membership

This response contains a 2 byte bitwise representation of current groups. This particular device is a member of Group 0.

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x02 Data Length

3 0x00 Bitwise Membership (Groups 8-15)
4 0x01 Bitwise Membership (Groups 0-7)
5 0xA2 Checksum

42 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_DALI_ADDRESSES_WITH_INSTANCES

Frame Type: Basic

Query for DALI addresses that have instances associated with them. Due to payload restrictions, the TPI processor can't
return 64 results in a single payload, therefore, a start address in data_lo must be specified. For example, you might typically
run the command with start address 0 and then a further command with start address 60 to check for instances on the final
4 control devices.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x16 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 Start address of list to search (eg. 60)
7 0x12 Checksum

Response with DALI addresses

This response contains three addresses. You can use QUERY_INSTANCES_BY_ADDRESS to get the instance information
associated with an address returned from this request.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x03 Data Length

3 0x41 DALl address 65

4 0x47 DALI address 71

5 0x52 DALl address 82

6 0xA4 Checksum

Examples 43

zencontrol Docs

QUERY_DMX_DEVICE_NUMBERS

Frame Type: Basic

DMX Devices are virtual devices configured manually within the controller. These devices have DALI-like metadata associ-
ated with them. They have a number that corresponds with a channel number.

Consider sending multiple requests if the first/previous returns with aData Length of 64. The paging value should be larger
than the cumulative number of channels previously returned.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x17 Command
3 0x00 -
4 0x00 -
5 0x00 Page Value Hi
6 0x00 Page Value Lo
7 0x13 Checksum

Response with DMX Device Numbers

This response contains two DMX Device Numbers with a length of 2 bytes each. Number of 7 for the first and Number of 2
for the second.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x04 Data Length

3 0x00 DMX Device Number 1 Hi

4 0x07 DMX Device Number 1 Lo

5 0x00 DMX Device Number 2 Hi

6 0x02 DMX Device Number 2 Lo

7 O0xA0 Checksum

44 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_DMX_DEVICE_BY_NUMBER

Frame Type: Basic

Query DMX Device information using a channel number.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x18 Command
3 0x00 -
4 0x00 -
5 0x00 DMX Device Number Hi
6 0x07 DMX Device Number Lo
7 0x1B Checksum
Response with DMX Device data
This response contains DMX Device data for DMX Channel 7.
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num
2 0x08 Data Length
3 0x00 DMX Channel Hi
4 0x01 DMX Channel Lo
5 OxFF Level
6 0x00 Min Level
7 OxFF Max Level
8 OxFF Power On Level
9 0x00 DMX Channel Behaviours - (see DMX Channel Behaviours)
10 0x00 Universe number
1 0x57 Checksum

Examples

45

zencontrol Docs

QUERY_DMX_LEVEL_BY_CHANNEL

Frame Type: Basic

Query DMX Channel Level (and mode) by Channel number (1-512). If the mode is DMX_BEHAVIOUR_TRIGGER this represents
a DMX value input/received. If the mode is DMX_BEHAVIOUR_QUTPUT this means the controller is sending this value.

Warning: A level of 0x00 can be a default value and does not necessarily mean that data has been sent or received yet.
A way around this may be to wait for a TPI Event that indicates the DMX should be active.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x19 Command
3 0x00 -
4 0x00 -
5 0x00 DMX Channel Hi
6 0x07 DMX Channel Lo
7 Ox1A Checksum

Response with DMX Device data

This response contains the level for DMX Channel 7.

Byte Index | Byte Value | Description

0 OxAT Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x02 Data Length

3 0x00 Mode - See DMX Channel Behaviours
4 OxFF Level (255)

5 0xA3 Checksum

46 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_DMX_DEVICE_LABEL_BY_NUMBER

Frame Type: Basic

Query the label for a DMX Device by Channel number (1- 512). Universe can be specified in the Data Hi byte. Responds with
NO_ANSWER if label not found. Max 64 characters.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x20 Command
3 0x00 -
4 0x00 DMX Universe
5 0x00 DMX Device Channel Number High Byte
6 0x07 DMX Device Channel Number Low Byte
7 0x23 Checksum

Response with DMX Device data

This response contains the label Foo for DMX Device with a channel of 7.

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x03 Data Length

3-5 0x466F6F | Foo

6 0x8B Checksum

Examples 47

zencontrol Docs

QUERY_SCENE_NUMBERS_FOR_GROUP

Frame Type: Basic

Query the scenes that a group has set up on the controller. Must be a named scene on the cloud. Group number 0-15 is
required, not 64-79 as used in other commands.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 Ox1A Command
3 0x02 Group Number (0-15)
4 0x00 Unused
5 0x00 Unused
6 0x00 Unused
7 0x1C Checksum

Bitwise response of scenes that the group 2 is a member of

This response shows that group 2 is currently a member of scene 2 only

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x02 Data Length

3 0x00 Scene Membership (8-15)

4 0x04 Scene Membership (0-7)

5 0xA3 Checksum

QUERY_SCENE_LABEL_FOR_GROUP

Frame Type: Basic

Query the label for a scene and group number combination. Must be set up in the cloud. If scene does not exist, will receive
a REPLY_NO_ANSWER. Max 64 characters.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x1B Command
3 0x02 Group Number (0-15)
4 0x02 Scene Number (0-12)
5 0x00 Unused
6 0x00 Unused
7 Ox1F Checksum

Response of group string

This response contains the label Foo for the scene 2 group 2. Note that as with all label answers, the answer is size dependent
on the string length.

48 Chapter 1. Third Party Interface Documentation

zencontrol Docs

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x03 Data Length

3-5 0x466F6F | Foo

6 0x8B Checksum

Examples

49

zencontrol Docs

QUERY_CONTROLLER_VERSION_NUMBER

Frame Type: Basic

Query the 3 byte version number of the controller.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x1C Command
3 0x00 Unused
4 0x00 Unused
5 0x00 Unused
6 0x00 Unused
7 0x18 Checksum
Response of controller version
This response shows that the controller is v1.6.255
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num
2 0x03 Data Length
3 0x01 Major Version
4 0x06 Minor Version
5 OxFF Minor Minor Version
6 0x5A Checksum

50

Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_CONTROL_GEAR_DALI_ADDRESSES

Frame Type: Basic

Query the control gear addresses present in the database

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x1D Command
3 0x00 Unused
4 0x00 Unused
5 0x00 Unused
6 0x00 Unused
7 0x19 Checksum

Bitwise response of control gear present in database

This response shows address 0-9 are present on the controller

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x08 Data Length

3 OxFF Bitwise Present (CG AQ-7)

4 0x03 Bitwise Present (CG A8-15)
5 0x00 Bitwise Present (CG A16-23)
6 0x00 Bitwise Present (CG A24-31)
7 0x00 Bitwise Present (CG A32-39)
8 0x00 Bitwise Present (CG A40-47)
9 0x00 Bitwise Present (CG A48-55)
10 0x00 Bitwise Present (CG A56-63)
1 0x55 Checksum

Examples

51

zencontrol Docs

DALI_INHIBIT

Frame Type: Basic

Inhibit sensors from changing DALI address 7 for 180 seconds.

Request

Response

Just OK. No extra data.

DALI_SCENE

Frame Type: Basic

Call a DALI Scene on an address. Use 0xFF to broadcast the scene across all addresses. Most likely you just want to call a

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0xAQ Command
3 0x07 Address
4 0x00 -
5 0x00 Time Hi
6 0xB4 Time Lo
7 0x17 Checksum
Byte Index | Byte Value | Description
0 0xAO0 Response Type (0K)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xAO0 Checksum

scene on a particular group by adding 64 to the group number for Address.

Request

Response

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0xA1 Command

3 OxFF Address

4 0x00 -

5 0x00 -

6 0x01 Scene number

7 0x5B Checksum

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

52 Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_ARC_LEVEL

Frame Type: Basic

Call a DALI Level on an address. Levels can be called on groups by adding 64 to the group number.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0xA2 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 Ox7F level (127)
7 0xD8 Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

DALI_ON_STEP_UP

Frame Type: Basic

Call a DALI On and Step Up on an address. If a device is off, it will turn it on. If a device is on, it will step up.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xA3 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xA6 Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

Examples 53

zencontrol Docs

DALI_STEP_DOWN_OFF

Frame Type: Basic

Call a DALI Down and Off on an address. If a device is at min, it will turn off. If a device is not yet at min, it will step down.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0xA4 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 OxA1 Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description
0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xA2 Checksum
DALI_UP
Frame Type: Basic
Call a DALI Up on an address.
Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xA5 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xAQ Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

54

Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_DOWN

Frame Type: Basic

Call a DALI Down on an address.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0xA6 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xA3 Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for

a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description
0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xA2 Checksum
DALI_RECALL_MAX
Frame Type: Basic
Call a DALI Recall Max on an address.
Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 O0xA7 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xA2 Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for

a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

Examples

55

zencontrol Docs

DALI_RECALL_MIN

Frame Type: Basic

Call a DALI Recall Min on an address.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0xA8 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xAD Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description
0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xA2 Checksum
DALI_OFF
Frame Type: Basic
Call a DALI Off on an address.
Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xA9 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xAC Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

56

Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_QUERY_LEVEL

Frame Type: Basic

Query the Arc Level for a DALI address. Dali level can be 0-254. The additional value of 255 represents as mixed levels. If
the address does not exist in the database (or the group has no devices) the response will be 0. This is to bias any resulting
decision to send commands to this unknown target as turning the light ON.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 OxAA Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 OxAF Checksum
Response
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num
2 0x01 Data Length
3 OxFE Level (254)
4 0xA0 Checksum

Examples 57

zencontrol Docs

DALI_QUERY_CONTROL_GEAR_STATUS

Frame Type: Basic

Query the Status for control gear addresses 0-63. Note that 64-79 can be used for groups 0-15 and will produce a set bit if

ANY of the group members have the bit set. Similarly, 127/255 can be used for broadcast status but this is only supported
as of 1.9.180.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 OxAB Command
3 0x01 Address (0 - 63 for CGO - 63, 64 - 79 for G0-15, 127/255 for broadcast)
4 0x00 -
5 0x00 -
6 0x00 -
7 OxAE Checksum
Response
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num
2 0x01 Data Length
3 0x04 Status (See DAL Status Masks)
4 0xA4 Checksum

58 Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_QUERY_CG_TYPE

Frame Type: Basic

Query control gear device type information for a DALI address 0-63. does not work for groups or broadcast target. If the
device does not exist, will return all zero.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xAC Command
3 0x01 Address (0-63)
4 0x00 -
5 0x00 -
6 0x00 eDALI Byte
7 0xA9 Checksum
Response

Response data is 4 bytes/32 bits long in little endian format. In the example, the CG would have device type 0 (FLOURES-
CENT) and 8 (COLOUR CONTROL)

Warning: Some programming languages/runtimes (Luajit for example) do not reliably perform bitwise operations on
numbers >24bits due to using floating point numbers for all numbers. Bitwise operations risk overwriting the sign and
exponent information. You may run into these issues when attempting to deal with this result as a single 32bit integer.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x04 Data Length

3 0x01 CG Device Type 0-7 membership

4 0x01 CG Device Type 8-15 membership
5 0x00 CG Device Type 16-23 membership
6 0x00 CG Device Type 24-31 membership
7 0xAS5 Checksum

Examples 59

http://bitop.luajit.org/semantics.html
https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats
https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

zencontrol Docs

DALI_QUERY_LAST_SCENE

Frame Type: Basic

Query the last heard Scene for an address. Note that any changes to a single dali device that are done through group or
broadcast scene commands do change the last heard scene for the dali address of the single device too. For example, if
A10 is member of GO and we sent a scene command to GO, A10 will show the same last heard scene as GO (64).

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xAD Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xA8 Checksum

Response with Scene Number

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x01 Data Length

3 0x07 Last Heard Scene Number

4 0xA0 Checksum

60 Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_QUERY_LAST_SCENE_IS_CURRENT

Frame Type: Basic

Query if the last heard scene is the current active scene.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 OxAE Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 OxAB Checksum

Response with Boolean

0x01 indicates the True condition - the last heard scene is the currently active scene. 0x00 indicates the False condition,
which is likely caused by an Arc Level or being issued to the address after the last Scene command.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x01 Data Length

3 0x01 Last Heard Scene is Current Scene (boolean)
4 0xAQ Checksum

DALI_QUERY_MIN_LEVEL

Frame Type: Basic

Query Minimum Level for an Address.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 OxAF Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 O0xAA Checksum

Response with Minimum Level

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x01 Data Length

3 0x01 Min Level (1)

4 0xA1 Checksum

Examples 61

zencontrol Docs

DALI_QUERY_MAX_LEVEL

Frame Type: Basic

Query Maximum Level for an Address.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0xB0 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xB5 Checksum

Response with Maximum Level

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x01 Data Length

3 OxFE Max Level (254)

4 Ox5E Checksum

DALI_QUERY_FADE_RUNNING

Frame Type: Basic

Query Fade running on an address.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xB1 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xB4 Checksum

Response with Boolean

Byte Index | Byte Value | Description

0 OxA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x01 Data Length

3 0x00 Fade is running (False)

4 0xAO0 Checksum

62 Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_ENABLE_DAPC_SEQ

Frame Type: Basic
Begin a DALI Direct Arc Power Control (DAPC) Sequence.

DAPC allows overriding of the fade rate. This allows levels to be immediately set. A DAPC sequence will be continued for
250 milliseconds. If no Arc-levels are received for 250 milliseconds then the DAPC sequence ends and fade rates will apply
again.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xB2 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xB7 Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

Examples 63

zencontrol Docs

QUERY_DALI_EAN

Frame Type: Basic
Query for a Control Device or Control Gear European Article Number (EAN) also known as a GTIN.

It's important to note that for Control Devices, Address must be offset by + 64. For Control Gear the normal address between
0 and 63 is used.

Request

This is a request for the control gear EAN at DALI address 1.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0xB8 Command

3 0x01 Address

4 0x00 -

5 0x00 -

6 0x00 -

7 0xBD Checksum

Response with EAN

Example contains the EAN for the product described as a zencontrol Wireless PIR sensor with relay and 2 inputs. This data
converted to an decimal integer is 6971103532931.

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x06 Data Length (always 6 for EAN)
3 0x65 -

4 0x71 -

5 0x62 -

6 0x65 -

7 0x78 -

8 0x03 -

9 O0xCE Checksum

64 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_DALI_SERIAL

Frame Type: Basic
Query for a Control Device or Control Gear serial number.

It's important to note that for Control Devices, Address must be offset by + 64. For Control Gear the normal address between
0 and 63 is used.

Request

This is a request for the control gear serial number at DALI address 1. Dali serial numbers are 8 bytes in size.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0xB9 Command

3 0x01 Address

4 0x00 -

5 0x00 -

6 0x00 -

7 0xBC Checksum

Response with Serial Number

Example contains the serial number for the Control Gear with DALI address 1. The example shows a serial number of
0x12345678912345 or 5124095575401285

Byte Index | Byte Value | Description

0 OxA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x08 Data Length (always 8 for serial number)
3 0x12 MSB Serial Number

4 0x34 -

5 0x56 -

6 0x78 -

7 0x91 -

8 0x23 -

9 0x34 -

10 0x45 LSB Serial Number

11 0x27 Checksum

Examples 65

zencontrol Docs

QUERY_VIRTUAL_INSTANCES

Frame Type: Basic

Query Virtual Instances and their types.

Virtual Instances / Virtual Switches are a paid addon. See Licenses for more information.
Request

Query to see the virtual instances on this controller. If there are no instances, response will be NO_ANSWER. A paging value of
the number of instances already received can go in data_mid and data_lo bytes, though this is unlikely to be needed as no
controller currently implements so many virtual instances that it would be necessary.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0xB6 Command

3 0x00 -

4 0x00 -

5 0x00 Paging value Hi

6 0x00 Paging value Lo

7 0xB7 Checksum

Response with Virtual Instance metadata
Responses return 0 or more 2 byte Virtual Instance descriptions.

This example shows a single instance returned. Multiple instances will result in a Data Length that will be a multiple of 2
and the fields will repeat in a predictable pattern.

Byte Index | Byte Value | Description

0 OxAT Response Type (REPLY_ANSWER)

1 0x00 Seq. Num

2 0x02 Data Length (divide by 2 to get number of Instances)
3 0x00 Virtual Instance Number

4 0x01 Instance Type. (See Instance Types)

5 0xA3 Checksum

66 Chapter 1. Third Party Interface Documentation

zencontrol Docs

VIRTUAL_INSTANCE

Frame Type: Basic

Trigger a binary action on a Virtual Instance given a virtual instance number and an action.

Virtual Instances / Virtual Switches are a paid addon. See Licenses for more information.
If the instance does not exist, response will be ERROR with INVALID_ARGS.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPl Advanced
1 0x00 Seq. Num
2 0xB3 Command
3 0x01 Virtual Instance number
4 0x00 -
5 0x00 -
6 0x01 Instance Action - See Instance Binary States
7 0xB6 Checksum
Response
Byte Index | Byte Value | Description
0 0xAO0 Response Type (0K)
1 0x00 Seqg. Num
2 0x00 Data Length
3 0xAO0 Checksum

DALI_CUSTOM_FADE

Frame Type: Basic

Run a fade to a level on a DALI address with a custom fade time in seconds. If target is a group or broadcast target, the
member devices in the target MUST have the same arc value or unexpected results will occur. If a lighting command is sent
to the same target, the custom fade will be stopped.

Whilst this feature could theoretically handle constituent targets at different levels, it must be respected that any difference
in arc levels on members of a target means that the fade has to be split into up to 64 parallel fades, which is not easy for
dali to be able to service. If you require different levels, dali provides the SCENE concept, which allows you to call a scene,
where each device has a stored arc level to internally conduct a fade to.

Request

Fade to level 0 over 10 seconds.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced

1 0x00 Seq. Num

2 0xB4 Command

3 0x01 Address

4 0x00 Target Level

5 0x00 Seconds Hi Byte

6 0x0A Seconds Lo Byte (10 Seconds)
7 0xBB Checksum

Response

Examples

67

zencontrol Docs

Byte Index | Byte Value | Description

0 0xAO0 Response Type (0K)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xAO0 Checksum

68

Chapter 1. Third Party Interface Documentation

zencontrol Docs

DALI_GO_TO_LAST_ACTIVE_LEVEL

Frame Type: Basic

Command a DALI Address to go to its “Last Active” level

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0xB5 Command
3 0x01 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xBO Checksum
Response

Command has successfully sent and no answer was received in response to the command (this is expected behaviour for
a command). A better response would be OK (0xA0) but we must maintain backwards compatibility.

Byte Index | Byte Value | Description

0 0xA2 Response Type (NO_ANSWER)
1 0x00 Seq. Num

2 0x00 Data Length

3 0xA2 Checksum

QUERY_DALI_INSTANCE_LABEL

Frame Type: Basic
Query the Label for a DALI Instance given a Control Device and an Instance Number. Max 64 characters.
Request

Query the label for control device address 1 (65 or 0x41), instance 1 (second instance)

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced

1 0x00 Seq. Num

2 0xB7 Command

3 0x41 Control Device Address (64-127 CD0-64)
4 0x00 -

5 0x00 -

6 0x01 Instance number (0-31)

7 OxF3 Checksum

Response with Label

A label of Foo is returned.

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x03 Data Length

3-5 0x466F6F | Foo

6 0x8B Checksum

Examples 69

zencontrol Docs

CHANGE_PROFILE_NUMBER

Frame Type: Basic

Request a profile change on the controller. A profile change may not always be successful due as some profiles can’t override
others. Eg. an Emergency profile can’t be overridden by a regular scheduled profile.

Profile numbers are unique across sites, and are up to two-bytes long.

A profile number of 0xFFFF will request a profile change to the profile determined by the schedule.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xCO0 Command
3 0x00 -
4 0x00 -
5 0x00 Profile Number Hi
6 0xD1 Profile Number Lo
7 0x15 Checksum
Response
Byte Index | Byte Value | Description
0 0xA0 Response Type (REPLY_0K)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xA0 Checksum

A failure to schedule will reply with a response type of REPLY_ERROR and ERROR_CMD_REFUSED as data.

70 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_INSTANCE_GROUPS

Frame Type: Basic

Request Group targets associated with an instance. There are always 3 replies to any valid instance.
1. Primary
2. First
3. Second

The Primary group typically represents where the physical device resides.

A group number of 0xFF (255) indicates that no group has been configured.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPl Advanced
1 0x00 Seq. Num
2 0x21 Command
3 0x64 Address
4 0x00 -
5 0x00 -
6 0x01 Data Lo: Instance Number
7 0x40 Checksum
Response
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num
2 0x03 Data Length
3 0x01 Primary Group
4 0x02 First Group
5 OxFF Second Group
6 Ox5E Checksum

The Second group has a value of 0xFF, therefore should be ignored.

Examples 71

zencontrol Docs

QUERY_DALI_FITTING_NUMBER

Frame Type: Basic

Request the fitting number string (eg. 1.2) for control gear and control devices. Note: does not check for validity. If device
is not named or does not exist, you get a default identifier of Controller ID.Dali Address for control gear and Contoller ID.Dali
address + 100 for control devices.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x22 Command
3 0x01 Address (0-63 CG, 64-127 CD)
4 0x00 -
5 0x00 -
6 0x00 -
7 0x27 Checksum
Response
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num
2 0x03 Data Length
3 0x31 Data
4 0x2E Data
5 0x32 Data
6 0xBD Checksum

The fitting number returned is a string of 1.2.

72 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_DALI_INSTANCE_FITTING_NUMBER

Frame Type: Basic

Request the fitting number string (eg. 1.2.0) for an instance.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x23 Command
3 0x99 Address (64-127 for CDAQ-A64)
4 0x00 -
5 0x00 -
6 0x01 Instance number (0-31)
7 OxBF Checksum
Response
Byte Index | Byte Value | Description
0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num
2 0x03 Data Length
3 0x31 Data
4 Ox2E Data
5 0x32 Data
6 0x8D Checksum

The fitting number returned is a string of 1.2.

Examples

73

zencontrol Docs

QUERY_CONTROLLER_LABEL

Frame Type: Basic

Request the label for the controller. Max 64 characters.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seqg. Num
2 0x24 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x20 Checksum
Response
Byte Index | Byte Value | Description
0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num
2 0x03 Data Length
3 0x44 Data
4 Ox6F Data
5 0x67 Data
6 OxEE Checksum

The controller returns a label of Dog.

74 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_CONTROLLER_FITTING_NUMBER

Frame Type: Basic

Request the fitting number string (eg. 90) for the controller itself. This should be the same as the first segment of a Control
Device/Control Gear fitting number.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x25 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x21 Checksum
Response
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num
2 0x01 Data Length
3 0x31 Data
4 0x91 Checksum

The fitting number returned is a string of 1.

QUERY_IS_DALI_READY

Frame Type: Basic

Query whether the DALI line is ready, or has a fault. Will reply REPLY_0K if DALI ready, or an error otherwise.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x26 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x22 Checksum
Response
Byte Index | Byte Value | Description
0 0xA3 Response Type (REPLY_ERROR)
1 0x00 Seqg. Num
2 0x01 Data Length
3 0x00 Data (ERROR_SHORT_CIRCUIT)
4 0xA2 Checksum

The response indicates DALI is not ready because the Response Type is not 0xA0/REPLY _0OK.

Examples

75

zencontrol Docs

QUERY_CONTROLLER_STARTUP_COMPLETE

Frame Type: Basic

Query whether the controller has finish its startup sequence. Will reply REPLY_OK if ready, or REPLY_NO_ANSWER otherwise.
Waiting for the startup sequence to complete is particularly important if you wish to perform queries about DALI. The more
devices on a DALI line the longer startup will take to complete. The startup sequence performs DALI queries such as device
type, current arc-level, GTIN, serial number, etc. For a line with only a handful of devices expect it to take approximately 1

minute.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x27 Command
3 0x00 -
4 0x00 -
5 0x00 -
6 0x00 -
7 0x23 Checksum
Response
Byte Index | Byte Value | Description
0 0xAO0 Response Type (REPLY_0K)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xAQ Checksum

This response indicates that the startup sequence has completed.

OVERRIDE_DALI_BUTTON_LED_STATE

Frame Type: Basic

Override the current DALI push button LED state. The LED is targeted using the associated button DALI address and instance

number. The desired LED state (eg. On or Off) is an Instance Binary State.

Request

Set/Override the LED for button at DALI address 112 on Instance Number 1to On (instance binary state On is 0x02).

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x29 Command
3 0x70 Address
4 0x00 -
5 0x02 Instance Binary State
6 0x01 Instance Number
7 0x5E Checksum
Response
Byte Index | Byte Value | Description
0 0xAQ Response Type (REPLY_OK)
1 0x00 Seqg. Num
2 0x00 Data Length
3 0xA0 Checksum
76 Chapter 1. Third Party Interface Documentation

zencontrol Docs

This response indicates that an override command was issued.

QUERY_LAST_KNOWN_DALI_BUTTON_LED_STATE

Frame Type: Basic

Query the last known DALI push button LED state. The LED is targeted using the associated button DALI address and
instance number. It should be noted that this will only work for led modes where the controller or a TPI caller is managing
the LED state. In many cases, the control device itself can manage its own led. The LED state returned (eg. On, Off or
Unknown) is an Instance Binary State.

Note: The “last known” LED state may not be the actual physical LED state. To help confirm actual LED state you can query
the state of DALI devices that may indicate what the LED state should be.

Request

Query LED for button at DALI address 112 (Control Device Address 48) on Instance Number 1 (the second instance of this
device).

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x30 Command
3 0x70 Address
4 0x00 -
5 0x00 -
6 0x01 Instance Number
7 0x45 Checksum
Response
Byte Index | Byte Value | Description
0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num
2 0x01 Data Length
3 0x01 LED state is Off
4 0xA0 Checksum

This response indicates that the LED state is Off.

Examples 77

zencontrol Docs

DALI_STOP_FADE

Frame Type: Basic

Sends a DALI STOP FADE dali command to an address/group/broadcast (DAPC level 0xFF). Dali STOP FADE will stop any
direct arc or scene fades current on the device.

This command is also able to stop custom/emulated DALI fades from the DALI_CUSTOM_FADE command but the target
must be the same target as the CUSTOM_FADE was instigated for. For example, it is not possible stop a CUSTOM_FADE
on a single address which is fading as part of a CUSTOM_FADE, instigated via a group or broadcast target. This would
require subtracting the target from fade and changing to fading individual devices. If you have a group of 20 devices and
you instruct the system to subtract one, each direct arc command must now be sent out 19 times (to individual devices).
This would likely produced significant degradation in the fade.

Request

Stop the custom fade on Address 0.

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0xC1 Command
3 0x00 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0xC5 Checksum
Response
Byte Index | Byte Value | Description
0 0xAQ Response Type (REPLY_OK)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xAQ Checksum

78 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_DALI_COLOUR_FEATURES

Frame Type: Basic

Query DALI Colour Features. Features can also be described as capabilities. The byte returned indicates the colour types
that the light is capable of using (eg. tuneable white, RGBWAF, PRIMARY_N) and the channel count and number of primaries.

Request

Query a DALI Control Gear with type COLOUR_CONTROL on Address 0.

Response

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x35 Command
3 0x00 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0x31 Checksum
Byte Index | Byte Value | Description
0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num
2 0x01 Data Length
3 0x83 Data
3 0xAO0 Checksum

The response of 0x83 can be represented as 0b10000011. Reading from right to left it can be decoded as the following:

Bits | Position Index | Description

1 0 This light is capable of CIE 1931 XY Coordinates.

1 1 This light is capable of colour temperature (Kelvin) for tuneable white.

000 | 2t0 4 0b000 is decimal 0. This light has no primaries.

100 | 5t07 0b100 is decimal 4. This light has 4 channels in RGBWAF mode (so it's a RGBW light).

Note: Some lights may only support tuneable white and no other colour capabilities. Accepting CIE1931 XY does mean
it necessarily has full-colour support as colour temperature can also be expressed using XY. If a light supports RGBWAF

channels it's reasonable to assume it supports full-colour.

Examples

79

zencontrol Docs

QUERY_DALI_COLOUR_TEMP_LIMITS

Frame Type: Basic

Query DALI Colour Temperature maximum, minimum and step value in Kelvin. Both the Physical limits and the configured
limits are returned.

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x38 Command
3 0x00 Address
4 0x00 -
5 0x00 -
6 0x00 -
7 0x3C Checksum
Response

The response contains a physical warmest of 1000K, physical coolest of 6000K, configured warmest of 2000K, configured
coolest of 6000K and a step value of 500K.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x0A Data Length

3 0x03 Physical Warmest Upper Byte
4 OxES8 Physical Warmest Lower Byte
5 0x17 Physical Coolest Upper Byte
6 0x70 Physical Coolest Lower Byte
7 0x07 Soft Warmest Upper Byte

8 0xDO Soft Warmest Lower Byte

9 0x17 Soft Coolest Upper Byte

10 0x70 Soft Coolest Lower Byte

11 0x01 Step Value Upper Byte

12 OxF4 Step Value Lower Byte

13 0x62 Checksum

80 Chapter 1. Third Party Interface Documentation

zencontrol Docs

SET_SYSTEM_VARIABLE

Frame Type: Basic

Set a system variable. On V2.1 pro controllers, there are 148 system variables. For previous and non pro controllers there
are 48 system variables.

System variables in V2.1 are signed 32bit and have magnitude. For compatibility reasons, a new command will be created
to take advantage of this. Any usage of this command is limited to 16bit and will set zero magnitude.

Request

Set system variable 3 to OXFFFE. The variable number goes in the address byte and the value to set is split across data_mid
and data_lo.

Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num
2 0x36 Command
3 0x03 Variable Number
4 0x00 -
5 OxFF Data Mid (Upper byte)
6 OxFE Data Lo (Lower byte)
7 0x30 Checksum
Response
Byte Index | Byte Value | Description
0 0xAQ Response Type (REPLY_OK)
1 0x00 Seq. Num
2 0x00 Data Length
3 0xAQ Checksum

Examples 81

zencontrol Docs

QUERY_SYSTEM_VARIABLE

Frame Type: Basic

Query a system variable. After V2.1, pro controllers have been extended to support 148 system variables. For previous and
non pro controllers there are 48 system variables.

System variables in V2.1 are signed 32bit and have magnitude. For compatibility reasons, a new command will be created
to take advantage of this.

Request

Query system variable 3.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x00 Seq. Num

2 0x37 Command

3 0x03 Variable Number

4 0x00 -

5 0x00 -

6 0x00 -

7 0x30 Checksum

Response

The result of the query to system variable 3 is OxFFFE.

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seq. Num

2 0x02 Data Length

3 OxFF Data (Hi byte)

4 OxFE Data (Lo byte)

5 0x5C Checksum

82 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_SYSTEM_VARIABLE_NAME

Frame Type: Basic

Query the Label for a system variable. Pro controllers only.

Request

Query the label for system variable index 16 (0x10)

Max 64 characters.

The controller returns a label of Dog.

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced

1 0x00 Seq. Num

2 0x42 Command

3 0x10 System variable number (0-147)
4 0x00 -

5 0x00 -

6 0x00 -

7 0x56 Checksum

Byte Index | Byte Value | Description

0 OxAT1 Response Type (REPLY_ANSWER)
1 0x00 Seqg. Num

2 0x03 Data Length

3 0x44 Data

4 Ox6F Data

5 0x67 Data

6 OxEE Checksum

Examples

83

zencontrol Docs

QUERY_PROFILE_INFORMATION

Frame Type: Basic QUERY_PROFILE_NUMBERS

Query of current profile information and numbers. Supercedes QUERY_PROFILE_NUMBERS
Note: Behaviour contains the following information:

Bit 0 - is disabled (1 for is disabled, 0 enabled)

Bit 1-2 - Profile priority (where 0 - scheduled, 1- higher, 2 - even higher etc)

Request

A controller has 4 profiles (0, 100, 200, 400). For the purposes of illustration, behaviours are set to random 8bit numbers but
would only have bits 0-2 set in real world.

The current active profile number gives the actual profile the controller is in. This will generally be the scheduled profile but
is subject to the controller being in a higher priority profile, preventing the controller from being in the scheduled profile.

The last scheduled profile number is the profile that the controller should be in if it is not in a higher priority profile.
The last overridden profile UTC is the time if a controller entered a non scheduled profile.

The last scheduled profiled UTC is the time of the last scheduled profile change (regardless of whether it has succeeded)

Byte Index | Byte Value | Description

0 0x04 Start Byte TPI Advanced
1 0x46 Seq. Num

2 0x43 Command

3 0x00 -

4 0x00 -

5 0x00 -

6 0x00 -

7 0x01 Checksum

The controller returns a label of Dog.

Byte Index | Byte Value Description

0 OxAT Response Type (REPLY_ANSWER)

1 0x46 Seq. Num

2 0x1B Data Length

3 0x00 Current Active Profile Number (High Byte)
4 0x00 Current Active Profile Number (Low Byte)
5 0x00 Last Scheduled Profile Number (High Byte)
6 0x64 Last Scheduled Profile Number (Low Byte)
7-10 0x22334455 | Last Overridden Profile UTC High byte first
1114 0x44556677 | Last Scheduled Profile UTC High byte first
15-16 0x0000 Profile Number 0

17 OxE8 Profile Behaviour

18-19 0x0064 Profile Number 100

20 OxDF Profile Behaviour

21-22 0x00C8 Profile Number 200

23 0x37 Profile Behaviour

24-25 0x0190 Profile Number 400

26 OxF5 Profile Behaviour

27-28 0x01F4 Profile Number 500

29 0xCB Profile Behaviour

30 Ox6E Checksum

84 Chapter 1. Third Party Interface Documentation

zencontrol Docs

QUERY_COLOUR_SCENE_MEMBERSHIP_BY_ADDR

Frame Type: Basic

Query a list of scenes with colour change data for an address. Will respond with NO_ANSWER if the device does not have
the colour control device type or no scenes with data are found

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x66 Seq. Num
2 0x44 Command
3 Ox1E Control Gear address A30
4 0x00 -
5 0x00 -
6 0x00 -
7 0x38 Checksum

Response with Scenes

This response contains a list of any scene that has colour data.

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x66 Seq. Num

2 0x08 Data Length (number of groups in this case)
3 0x00 Scene 0 has data

4 0x01 Scene 1 has data

5 0x02 Scene 2 has data

6 0x03 Scene 3 has data

7 0x04 Scene 4 has data

8 0x05 Scene 5 has data

9 0x08 Scene 8 has data

10 0x09 Scene 9 has data

11 0xAB Checksum

Examples 85

zencontrol Docs

QUERY_COLOUR_SCENE_0_7_DATA_FOR_ADDR
QUERY_COLOUR_SCENE_8_11_DATA_FOR_ADDR

Frame Type: Basic

Query the colour control data for scenes 0-7/8-11. Answer will be NO_ANSWER if device does not have a colour control
device type. Data is in 7 byte segments, which comprise of scene colour type and 6 bytes of data. All scenes are populated,
regardless of whether they have data.

Colour type 0x10 = XY, data = High Byte X, Low Byte X, High Byte Y, Low Byte Y, 2 bytes unused data OxFF
Colour type 0x20 = TC (kelvin), data = High Byte, Low Byte in Kelvin, 4 bytes of unused data OxFF.

Colour type 0x80 = RGBWAF, data=r1,g, b, w, a, f

Colour type 0xFF = Unused scene, data = 6 bytes OxFF

Colour temperatures are subject to minimum and maximum colour temperatures set on device. Scene values that are given
by the responses to this command have already had their scene values constrained by these boundaries.

RGBWAF values of 0xFF indicate “no change” to the current colour.

The response will contain the scene data for scenes 0-7 (0x45) / 8-11 (0x46)

Request
Byte Index | Byte Value | Description
0 0x04 Start Byte TPI Advanced
1 0x2B Seq. Num
2 0x45 Command
3 0x1B Control Gear address A27
4 0x00 -
5 0x00 -
6 0x00 -
7 0x71 Checksum

Response with Scenes

The response will contain the scene data for scenes 0-7 (0x45) / 8-11 (0x46)

86 Chapter 1. Third Party Interface Documentation

zencontrol Docs

Byte Index | Byte Value | Description

0 0xA1 Response Type (REPLY_ANSWER)
1 0x66 Seq. Num

2 0x08 Data Length (number of groups in this case)
3 0x10 Scene 0 is an XY Scene

4 0x64 Scene 0 X High Byte

5 0x9B Scene 0 X Low Byte

6 0x81 Scene 0 Y High Byte

7 O0xCF Scene 0 Y Low Byte

8 OxFF Scene 0 Unused Data

9 OxFF Scene 0 Unused Data

10 0x20 Scene 1is a Tc Scene (colour temperature)
11 OxAA Scene 1 Tc High Byte (kelvin)

12 0xBB Scene 1 Tc Low Byte (kelvin)

13 OxFF Scene 1 Unused Data

14 OxFF Scene 1 Unused Data

15 OxFF Scene 1 Unused Data

16 OxFF Scene 1 Unused Data

10 0x80 Scene 2 is an RBWAF Scene

1 0x01 Scene 2 Red

12 0x02 Scene 2 Green

13 0x03 Scene 2 Blue

14 OxFF Scene 2 White (no change)

15 0x04 Scene 2 Amber

16 OxFF Scene 2 Freecolour (no change)
. Continued for scenes 3-7

59 0x- Checksum

Examples

87

zencontrol Docs

BUTTON_PRESS_EVENT and BUTTON_HOLD_EVENT

Frame Type: TPl Events Frame

Link to Event Types: Event Types

A button press event broadcast over UDP. If event is HOLD_EVENT, event type will be 0x02.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x007B Target - Control Device DALI Address 59 (+64 for Control devices)

10 0x00 Event Type - BUTTON_PRESS_EVENT

1 0x01 Data Length

12 0x05 (Data) Instance number. Useful for identifying the exact button on a keypad
13 0x2D Checksum

88

Chapter 1. Third Party Interface Documentation

zencontrol Docs

ABSOLUTE_INPUT_EVENT

Frame Type: TPl Events Frame
Link to Event Types: Event Types

An absolute input has reported a change in input value. In the example below, Absolute input Control Device A59, instance
number 5 has reported 0xAABB for its input value.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x007B Target - Control Device DALI Address 59 (+64 for Control devices)

10 0x02 Event Type - ABSOLUTE_INPUT_EVENT

1 0x03 Data Length

12 0x05 (Data) Instance number. Useful for identifying the exact button on a keypad
13 OxAA Input value high byte

14 0xBB Input value low byte

15 0x3C Checksum

Examples 89

zencontrol Docs

LEVEL_CHANGE_EVENT

Frame Type: TPl Events Frame

Link to Event Types: Event Types
A DALI Level change event on DALI target 59.

Whilst other events use the target to indicate group via the 64-79 range, these are legacy commands and cannot be extended
with compromising existing implementations.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals "ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x003B Target - Actual DALI Address (59) / Group
10 0x03 Event Type - LEVEL_CHANGE_EVENT

1 0x01 Data Length

12 OxFE (Data) DALI Arc Level

13 0x95 Checksum

GROUP_LEVEL_CHANGE_EVENT

Frame Type: TPl Events Frame

Link to Event Types: Event Types

A DALI Level change event on DALI group 6.

Whilst other events use the target to indicate group via the 64-79 range, these are legacy commands and cannot be extended
with compromising existing implementations.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x0006 Target - Group 6

10 0x04 Event Type - GROUP_LEVEL_CHANGE_EVENT
1 0x01 Data Length

12 0xFO (Data) DALI Arc Level

13 0xA1 Checksum

90

Chapter 1. Third Party Interface Documentation

zencontrol Docs

SCENE_CHANGE_EVENT

Frame Type: TPl Events Frame

Link to Event Types: Event Types

A scene has been changed on a target. Can support control gear addresses (0-63) and groups (64-79).

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ‘ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x007B Target - Control Gear DALI Address 59
10 0x05 Event Type - SCENE_CHANGE_EVENT
1 0x0T1 Data Length

12 0x05 (Data) Scene number recalled (0-15)
13 0x28 Checksum

Examples

91

zencontrol Docs

OCCUPANCY_EVENT

Frame Type: TPl Events Frame

Link to Event Types: Event Types

An occupancy sensor has reported a motion detected event. In the example CD A59 Instance number 5 has reported motion.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x007B Target - Control Device DALI Address 59 (+64 for Control devices)
10 0x06 Event Type - Occupancy detected

1 0x02 Data Length

12 0x05 (Data) Instance number. Useful for identifying the exact sensor
13 0x01 Unneeded data

14 0x29 Checksum

92

Chapter 1. Third Party Interface Documentation

zencontrol Docs

SYSTEM_VARIABLE_CHANGED_EVENT

Frame Type: TPl Events Frame
Link to Event Types: Event Types

A system variable value has changed. In the example, system variable 32 has been changed to the value —200 with mag-
nitude of —1 (implying that the actual system variable value is 20 as the value is —200 * 10*-1 = -20). It should be noted
expansion of the system variable system to include magnitude is principally targeted at obtaining values of sensors for a
variety of applications and that in principle, anything else would likely be best left at zero magnitude.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x0020 Target - System variable index 32

10 0x05 Event Type - SYSTEM_VARIABLE_CHANGED_EVENT
11 0x05 Data Length

12-15 OXxFFFFFF38 (Data) 1st - 4th byte (big endian). Value of -200

16 OxFF Magnitude (int8) of —1 (10*-1)

17 0x4A Checksum

Examples 93

zencontrol Docs

COLOUR_CHANGED_EVENT

Frame Type: TPl Events Frame
Link to Event Types: Event Types
Can support control gear addresses (0-63) and groups (64-79)

Keep in mind, there are multiple types of colour data such as Colour Temperature (in Kelvin) and CIE 1931 XY coordinates.
If a fixture is just RGB or RGBW (and not RGBWAF) then the data length will be equal to the number of channels + 1.

A DALI RGBWAF colour change event on DALI target 59.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x003B Target - DALI Address (59)
10 0x08 Event Type - Colour Change
11 0x07 Data Length

12 0x80 (Data) DALI RGBWAF - See Colour Type
13 OxFF R - Red Byte

14 0x00 G - Green Byte

15 0x00 B - Blue Byte

16 0x00 W - White Byte

17 0x00 A - Amber Byte

18 0x00 F - Freecolour Byte

19 0x19 Checksum

A Colour Temperature change event on DALI target 59.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals 'ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x003B Target - DALI Address (59)

10 0x08 Event Type - Colour Change

11 0x03 Data Length

12 0x20 (Data) Colour Mode TC - See Colour Type
13 OxFF Kelvin - Hi Byte

14 0x00 Kelvin - Lo Byte

15 0xBD Checksum

94 Chapter 1. Third Party Interface Documentation

zencontrol Docs

PROFILE_CHANGED_EVENT

Frame Type: TPl Events Frame

Link to Event Types: Event Types

When a controller profile changes (eg. After Hours) an event will be emitted. This shows a profile change to Profile 15.

Byte Index | Byte Value Description

0-1 0x5A43 Literally capitals ‘ZC'.

2-7 0x7CBACC2F402E | MAC Address

8-9 0x0000 Target / Unused for Profile Change
10 0x09 Event Type - Profile Event Change
1 0x02 Data Length

12 0x00 (Data) Profile Hi Byte

13 0xO0F Profile Lo Byte

14 0x56 Checksum

Examples

95

	Third Party Interface Documentation
	TPI Overview
	Supported Devices
	Licenses
	TPI & TPI Advanced over Stream-oriented Transports (RS232, RS485 and TCP)
	Serial Communication Parameters
	TPI & TPI Advanced over UDP & TCP

	TPI (Classic)
	TPI Advanced
	Frame Structures
	TPI Advanced Header
	Basic Request Frame
	DALI Colour Request Frame
	TPI Dynamic Subframe
	DMX Colour Request Frame
	TPI Advanced Response Frame
	TPI Event Multicast Frame

	The Sequence Counter Byte
	Calculating Checksums
	Error Codes
	DALI Addressing
	Special Values
	Instance Binary States
	Instance Types
	Instance Status & State Bitmasks
	TPI Event Types
	TPI Event Modes
	DMX Channel Block Types
	DMX Channel Personality Types
	DMX Channel Behaviour Masks
	DALI Status Masks
	DALI Control Gear Type Masks

	Commands
	Basic Commands
	Other Commands

	Examples
	TPI Advanced Examples
	QUERY_GROUP_LABEL
	QUERY_SCENE_LABEL
	QUERY_DALI_DEVICE_LABEL
	QUERY_PROFILE_LABEL
	QUERY_CURRENT_PROFILE_NUMBER
	TRIGGER_SDDP_IDENTIFY
	QUERY_TPI_EVENT_EMIT_STATE
	DALI_ADD_TPI_EVENT_FILTER
	DALI_CLEAR_TPI_EVENT_FILTERS
	QUERY_DALI_TPI_EVENT_FILTERS
	ENABLE_TPI_EVENT_EMIT
	SET_TPI_EVENT_UNICAST_ADDRESS
	QUERY_TPI_EVENT_UNICAST_ADDRESS
	QUERY_GROUP_NUMBERS
	QUERY_DALI_COLOUR
	QUERY_SCENE_NUMBERS
	QUERY_PROFILE_NUMBERS
	QUERY_OCCUPANCY_INSTANCE_TIMERS
	QUERY_INSTANCES_BY_ADDRESS
	QUERY_OPERATING_MODE_BY_ADDRESS
	DALI_COLOUR
	DMX_COLOUR
	QUERY_GROUP_BY_NUMBER
	QUERY_SCENE_BY_NUMBER
	QUERY_SCENE_NUMBERS_BY_ADDRESS
	QUERY_SCENE_LEVELS_BY_ADDRESS
	QUERY_GROUP_MEMBERSHIP_BY_ADDRESS
	QUERY_DALI_ADDRESSES_WITH_INSTANCES
	QUERY_DMX_DEVICE_NUMBERS
	QUERY_DMX_DEVICE_BY_NUMBER
	QUERY_DMX_LEVEL_BY_CHANNEL
	QUERY_DMX_DEVICE_LABEL_BY_NUMBER
	QUERY_SCENE_NUMBERS_FOR_GROUP
	QUERY_SCENE_LABEL_FOR_GROUP
	QUERY_CONTROLLER_VERSION_NUMBER
	QUERY_CONTROL_GEAR_DALI_ADDRESSES
	DALI_INHIBIT
	DALI_SCENE
	DALI_ARC_LEVEL
	DALI_ON_STEP_UP
	DALI_STEP_DOWN_OFF
	DALI_UP
	DALI_DOWN
	DALI_RECALL_MAX
	DALI_RECALL_MIN
	DALI_OFF
	DALI_QUERY_LEVEL
	DALI_QUERY_CONTROL_GEAR_STATUS
	DALI_QUERY_CG_TYPE
	DALI_QUERY_LAST_SCENE
	DALI_QUERY_LAST_SCENE_IS_CURRENT
	DALI_QUERY_MIN_LEVEL
	DALI_QUERY_MAX_LEVEL
	DALI_QUERY_FADE_RUNNING
	DALI_ENABLE_DAPC_SEQ
	QUERY_DALI_EAN
	QUERY_DALI_SERIAL
	QUERY_VIRTUAL_INSTANCES
	VIRTUAL_INSTANCE
	DALI_CUSTOM_FADE
	DALI_GO_TO_LAST_ACTIVE_LEVEL
	QUERY_DALI_INSTANCE_LABEL
	CHANGE_PROFILE_NUMBER
	QUERY_INSTANCE_GROUPS
	QUERY_DALI_FITTING_NUMBER
	QUERY_DALI_INSTANCE_FITTING_NUMBER
	QUERY_CONTROLLER_LABEL
	QUERY_CONTROLLER_FITTING_NUMBER
	QUERY_IS_DALI_READY
	QUERY_CONTROLLER_STARTUP_COMPLETE
	OVERRIDE_DALI_BUTTON_LED_STATE
	QUERY_LAST_KNOWN_DALI_BUTTON_LED_STATE
	DALI_STOP_FADE
	QUERY_DALI_COLOUR_FEATURES
	QUERY_DALI_COLOUR_TEMP_LIMITS
	SET_SYSTEM_VARIABLE
	QUERY_SYSTEM_VARIABLE
	QUERY_SYSTEM_VARIABLE_NAME
	QUERY_PROFILE_INFORMATION
	QUERY_COLOUR_SCENE_MEMBERSHIP_BY_ADDR
	QUERY_COLOUR_SCENE_0_7_DATA_FOR_ADDR
	QUERY_COLOUR_SCENE_8_11_DATA_FOR_ADDR
	BUTTON_PRESS_EVENT and BUTTON_HOLD_EVENT
	ABSOLUTE_INPUT_EVENT
	LEVEL_CHANGE_EVENT
	GROUP_LEVEL_CHANGE_EVENT
	SCENE_CHANGE_EVENT
	OCCUPANCY_EVENT
	SYSTEM_VARIABLE_CHANGED_EVENT
	COLOUR_CHANGED_EVENT
	PROFILE_CHANGED_EVENT

